
Parameterized Quasi-Physical Simulators for
Dexterous Manipulations Transfer

Supplementary Materials

Xueyi Liu1,3, Kangbo Lyu1, Jieqiong Zhang1, Tao Du1,2,3, and Li Yi1,2,3

1 Tsinghua University 2 Shanghai AI Laboratory 3 Shanghai Qi Zhi Institute
https://meowuu7.github.io/QuasiSim

Overview. The appendix contains a list of supplementary materials to support
the main paper.

– Additional Technical Explanations (Section A). We provide additional
explanations to complement the main paper.
• Dexterous Manipulation Transfer (Section A.1). We provide a more for-

mal task definition, outlining its objectives and the involved functions.
• Parameterized Quasi-Physical Simulators (Section A.2). Detailed expla-

nations of the parameterized point set dynamics, including its full dy-
namic equations, and the parameterized residual physics, covering net-
work designs, features, input, and output details.

• Dexterous Manipulation Transfer via a Physics Curriculum (Section A.3).
We include comprehensive illustrations of the transfer process based on
point sets, the iterative optimization procedure for approximating real-
istic dynamics, and detailed MPC procedure.

– Additional Experiments (Section B). We present further experimental
results to demonstrate the effectiveness of our method, along with discus-
sions, analyses, additional comparisons, a user study and insights into failure
cases and limitations.
• Transferred Dexterous Manipulations (Section B.1). Additional qualita-

tive results showcasing intricate manipulations to highlight our method’s
capability.

• Further Discussions and Analysis (Section B.2). We delve deeper into
the role of MPC in our method, the question of does the residual physics
module really compensates for the estimation other than taking the main
role, the intermediate optimization processes in the quasi-physical sim-
ulator curriculum, and experiments on a different simulated robot hand
whose morphology is significantly different from the human hand to
demonstrate our method’s capability in such cases.

• Additional Comparisons (Section B.3). In addition to comparisons with
previous Reinforcement Learning (RL) methods, we compare approaches
that incorporate human demonstrations into policy learning for acquiring
skills.

• Failure Cases (Section B.4). Analysis of failure cases to gain insights into
limitations and areas for improvement.

https://meowuu7.github.io/QuasiSim

2 X. Liu et al.

• User Study (Sec. B.5). We additionally include a user study to further
assess effectiveness of our method.

– Experimental Details (Section C). We illustrate details of datasets, met-
rics, baselines, models, evaluation settings, and running time as well as the
complexity analysis.

– Potential Negative Societal Impact (Section D). We discuss the po-
tential negative social impacts of the work.

We include a website and a video to introduce our work. The website and
the video contain animated transferred dexterous manipulations. We highly rec-
ommend exploring these resources for an intuitive understanding of the task,
difficulties, the effectiveness of our model, and its superiority over prior ap-
proaches. We include source code in the supplemental material. We will publicly
release the code and data upon acceptance of the paper.

A Additional Technical Explanations

We include a figure providing a comprehensive overview of the method (see
Fig. 1).

Transferring Human Demonstration via Point Set Dynamics

Optimizing Through a Contact Curriculum

Final
Trajectory

Iterative Optimization Optimized
Parameterized
Quasi-Physical
Simulator

Optimizing Towards a Realistic Physical Environment

Object

Parameterized
point set mass-point dynamics

articulated multi-body
dynamics

Point set

𝑑!"
sd(𝒑)𝒑

𝑑 = 	𝑑!" 	− sd(𝒑)
𝒑 𝐟" = 𝑘#𝑑 − 𝑘$𝑑�̇� 𝒏

𝐟%
& = ⋯
𝐟$
& = ⋯ 𝑑

Object

Contact
Region

Information

Residual force networks 𝝍

Point Set Dynamics

Spring-Damper Contact Modeling

Residual Physics

Sample
points

Manipulation Transfer via a Physics CurriculumParameterized Quasi-Physical Simulator

Fig. 1: Detailed Method Overview. The parameterized quasi-physical simu-
lator relaxes the articulated multi rigid body dynamics as the parameterized point set
dynamics, controls the contact behavior via an unconstrained parameterized spring-
damper contact model, and compensates for unmodeled effects via parameterized resid-
ual physics networks. We tackle the difficult dexterous manipulation transfer problem
via a physics curriculum.

https://meowuu7.github.io/QuasiSim/
https://youtu.be/Pho3KisCsu4

Quasi-Physical Simulators for Dexterous Manipulations Transfer 3

A.1 Dexterous Manipulation Transfer

Given a human manipulation demonstration, composed of a human hand mesh
trajectory and an object pose trajectory {H = {Hn}Nn=1,O = {On}Nn=1} with N
frames, the goal is transferring the demonstration to a dexterous robot hand in
simulation. Formally, we aim to optimize a control trajectory A that drives the
dexterous hand to manipulate the object in a realistic simulated environment so
that the resulting hand trajectory Ĥ = {Ĥn}Nn=1 and the object trajectory Ô =

{Ôn}Nn=1 are close to the reference motion {H,O}. Since the object properties
and the system parameters are unknown from the kinematics-only trajectory,
we estimate such parameters, denoted as set S, along with the hand control
optimization.
Optimization objective. The task aims at optimizing a hand control trajec-
tory A so that the resulting hand trajectory Ĥ and the object trajectory Ô are
close to the reference motions {H,O}. Formally, the objective is:

minimizeA,SwofO(O, Ô) + whfH(H, Ĥ), (1)

where wo and wh are object tracking weight and the hand tracking weight re-
spectively, fO measures the difference between two object pose trajectories, and
fH calculates the difference between two hand trajectory. Specifically,

fO(O, Ô) =
1

N

N∑
n=1

((1− qn · q̂n) + ∥tn − t̂n∥) (2)

fH(H, Ĥ) =
1

N

N∑
n=1

∥Ph
n −Pr

n∥, (3)

where qn is the orientation of the n-th frame reference object pose, represented in
quaternion, tn ∈ R3 is the translation of the n-th frame reference object pose, q̂n
and t̂n are the quaternion and the translation of the n-th frame estimated object
pose, Ph

n is the reference human hand keypoint at the n-th frame, and Pr
n is the

estimated robot hand keypoint at the n-th frame correspondingly. Keypoints
consist of five fingertips and three points on the hand wrist. We manually defined
them (Fig. 2). Weights wo and wh are set to 1.0, 1.0 in our method.

A.2 Parameterized Quasi-Physical Simulators

Parameterized point set dynamics. Each point pi in the point set Q is
treated as a mass point with a finite mass mi and infinitesimal volume. The
action space of the point set is composed of the joint forces u ∈ Rnr in the
reduced coordinate system, alongside a 3 degrees of freedom free force ai ∈ R3

applied to each point pi ∈ Q. A point is considered to be “attached” to the body
it was sampled from and can undergo articulated transformations, as illustrated
in the example shown in Figure 3. The dynamics of the point set encompass

4 X. Liu et al.

(a) Shadow hand with keypoints

[front view] [back view]

(b) MANO hand with keypoints

[front view] [back view]

Fig. 2: Hands with keypoints (keypoints are drawn as large pink and blue purple
points).

articulated multi-body dynamics [8, 11], along with the mass point dynamics of
each individual point pi. Specifically,

Mrq̈r = f̃r + (1− α)JTmrfm + fQV V + u, (4)
miẍi = Jiu+ αfi + α,∀pi ∈ Q, (5)

where Mr ∈ Rnr×nr is the generalized inertia matrix in reduced coordinates,
nr is the number of freedom of the articulated object, qr ∈ Rnr is the reduced
state vector of the articulated object, f̃r is the reduced force vector generated
by joint-space such as joint damping and stiffness, Jmr is the Jacobian mapping
generalized velocity q̇r to its maximal coordinate counterpart q̇m, fm is the max-
imal wrench vector including force and torque generated in maximal coordinate
system, fQV V is the quadratic velocity vector, u denotes the generalized joint
force, Ji represents the Jacobian mapping from the generalized velocity to the
point velocity ẋi, fi accounts for external forces acting on pi, and ai ∈ R3 repre-
sents the actuation force applied to the point pi. Consequently, the point set is
controlled by a shared control in the reduced coordinate space u and per-point
actuation force ai.

(a) Initial state (b) Transformed

A point in the
point set

Fig. 3: A point in the point set is regarded as “attached” to the body it sampled from
and is affected by joint actions accordingly.

Parameterized residual physics. We introduce two residual contact force
networks to compensate for the inherent limitations of the spring-damper based

Quasi-Physical Simulators for Dexterous Manipulations Transfer 5

contact modeling. For detailed residual contact force prediction, we introduce a
local contact network fψlocal that utilizes contact information identified in the
parameterized contact model and predicts residual forces between each contact
pair. For each point pair in contact (p,po), the local contact region is composed
of N l

c object surface points and N l
c hand surface points. For the contact point in

the object surface po, we identify a region which contains object surface points
whose distance to point po is not larger than a threshold dlthres = 0.05 (5cm)
(point po is not included in the region). After that, N l

c − 1 points are sampled
from such points via farthest point sampling. These points, together with po are
taken as the object local contact surface points. N l

c hand points are sampled in
the same way. We set N l

c to 100 in experiments. After that, the local contact
information consists of the geometry of the local contact region Pl

c ∈ R2N l
c×3,

per-point velocity Vl
c ∈ R2N l

c×3, and per-object point normal Nl
c ∈ RN l

c×3.
A PointNet is used to encode the contact region feature. The feature of each
point is composed of the point type embedding vector (128 dimension), point
position, point velocity, point normal (all zeros for hand points). The hidden
dimensions are [128, 256, 512, 1024]. After that, we calculate the global feature
via a ‘maxpool‘ operation. Then the global features is fed into the contact force
prediction module for local residual contact force prediction. The prediction
network is an MLP with hidden dimensions [512, 256, 128]. ReLU is leveraged as
the activation layer.

To address discrepancies in contact region identification between the pa-
rameterized contact model and real contact region, we also incorporate a global
residual network fψglobal that predicts residual forces and torques applied directly
to the object’s center of mass. To identify a global contact region, we adopt a
similar way that first identifies a region on the object, containing object surface
points whose distance to the nearest object contact point are smaller than the
global contact distance threshold dgthres = 0.1 (10cm). After that, global con-
tact region points are sampled for both the object and the hand in the same
way as sampling the local contact region points described above. The number of
global contact points on for the object and the hand is Ng

c = 500. Subsequently,
the global contact region feature is encoded from the global contact region in
the same way as does for local contact region feature. Then, the global contact
feature is fed to a prediction network for predicting residual force and residual
torque. The network architecture is the same as that for local residual force, but
with a different output dimension (3 for force, 3 for torque, and 6 dimension in
total).

A.3 Dexterous Manipulation Transfer via a Physics Curriculum

Transferring human demonstration via point set dynamics. The artic-
ulated rigid constraints are relaxed initially to facilitate robust manipulation
transfer between two morphologically different robot hands and to overcome
noise in the kinematic trajectory. After we have optimized the control trajec-
tory of the point set constructed from the dynamic MANO hand [5], the next

6 X. Liu et al.

goal is optimizing the control trajectory of the point set constructed from the
simulated robot hand. Reliable correspondences between points are required to
complete the transfer. Therefore, we first optimize the kinematics-only trajec-
tory of the simulated robot hand based on coarse correspondences defined on
keypoints (Fig. 2). The objective is to track the MANO hand trajectory. After
that, we define single directional point-point correspondence from the point set
of the MANO hand to the point set of the simulated robot hand via the nearest
neighbor. That is, for each point in the point set of the MANO hand, we find its
nearest point in the point set of the simulated robot hand as its correspondence.
After that, the hand tracking objective between the point set of the MANO
hand and that of the simulated robot hand becomes the average distance be-
tween point-point in correspondence. Subsequently, the control trajectory of the
point set is optimized so that the manipulated object pose trajectory can track
the reference object pose trajectory, and the trajectory of the simulated robot
hand’s point set can track the trajectory of the MANO hand’s point set. The
control trajectory of the point set is first initialized via the kinematic trajectory
of the point set via differentiable forward dynamics and optimization.
Optimizing towards a realistic physical environment. When transferring
to a realistic physical environment, we iteratively optimize the control trajec-
tory A and the parameterized simulator. In more detail, in each iteration, the
following steps are executed:

– Sample the replay buffer B from the interested realistic simulated environ-
ment.

– Optimize the quasi-physical simulator to approximate realistic dynamics by
ensuring that the simulated trajectory closely tracks the trajectory stored in
the replay buffer.

– Optimize the control trajectory A to accomplish the manipulation task
within the quasi-physical simulator.

Tracking via closed-loop MPC. After completing the optimization, the final con-
trol trajectory is yielded by model predictive control (MPC) [9] based on the op-
timized parameterized simulator and the hand trajectory A. Specifically, in each
step n, the current An and the following controls in several subsequent frames
{An+1, ...,An+q−1} are optimized to reduce the tracking error. Denote the sim-
ulated object pose trajectory as Ôq

n = {Ôn+1, ..., Ôn+q}, the corresponding ref-
erence object pose trajectory as Oq

n = {On+1, ...,On+q}, the simulated hand
trajectory as Ĥq

n = {Ĥn+1, ..., Ĥn+q} with the corresponding keypoint trajec-
tory {Pr

n+1, ...,P
r
n+1} and reference hand keypoint trajectory {Ph

n+1, ...,P
h
n+1}

the objective at each step n is as follows:

minimizeAwofO(Ôq
n,Oq

n) + whfH({Pr
n+1, ...,P

r
n+1}, {Ph

n+1, ...,P
h
n+1}). (6)

We update the control trajectory to minimize the objective via 10 steps gradient
descent with a learning rate 10−4.

Quasi-Physical Simulators for Dexterous Manipulations Transfer 7

B Additional Experiments

In this section, we present additional experimental results that delve into more
qualitative results on challenging cases (see Section B.1), further analysis and
discussions (see Section B.2), additional comparisons (see Section B.3), failure
case analysis (see Section B.4), and a user study (see Section B.5). Initially,
we present additional experimental results achieved by our approach to further
demonstrate its effectiveness. Subsequently, we delve into further discussions,
including the role of MPC in our method, further investigations in the residual
physics module, the intermediate optimization processes in the quasi-physical
simulator curriculum, and experiments conducted on a different simulated robot
hand that suffers from a significant morphology difference from the human hand.
Then we present additional comparisons to the literature where human demon-
strations are incorporated into policy learning. After that, we discuss failure
cases and analyze our limitations. At last, we present a toy user study as an
additional evaluation.

B.1 Transferred Dexterous Manipulations

Figure 4 showcases supplementary experimental results obtained through our
method. We highly encourage readers to explore our website and view the
accompanying supplementary video for animated demonstrations.

B.2 Further Discussions and Analysis

Robustness of MPC. Fig. 5 shows an example demonstrating tracking robust-
ness. In this challenging example where rich contacts between fingers and the
palm with the mouse are frequently established and broken, the control sequence
optimized in an open-loop manner struggles with keep contacting the mouse, and
the tracking is lost finally. However, with the optimized model, the trajectories
produced by MPC can successfully maintain enough contact with the object and
track the sequence naturally.
Role of residual physics in quasi-physical simulators. We evaluate the
role of the residual physics on a small subset of our data from the GRAB
dataset. We assess the impact of residual physics on a limited subset of our data
from the GRAB dataset. This subset comprises 60 ten-step transitions involving
manipulation sequences with objects such as bunny, mouse, stapler, pyramid,
cylinder, flashlight, watch, waterbottle, hammer, and clockarlam.

To investigate whether the residual physics compensates for prediction while
the analytical simulation remains predominant, we utilize two types of mod-
els: one comprising only the analytical part, and the other incorporating both
the analytical part and the residual physics network. These models are tasked
with predicting the object rotation and translation for each ten-step transition
based on the object’s initial state and hand action sequence. Let R denote the
object rotation predicted by the analytical part, and Rtot represent the rota-
tion predicted by the analytical part with the residual model. Similarly, let t

https://meowuu7.github.io/QuasiSim/
https://youtu.be/Pho3KisCsu4

8 X. Liu et al.

Human
Demo

Ours

Human
Demo

Ours

Human
Demo

Ours

Human
Demo

Ours

(a) Cleaning things by a brush

(b) Chopping things using a knife

(c) Carrying things using a ladle

(d) Bimanual cooperation for lifting

Timestamp

Human
Demo

Ours

(e) Rotating the object up and down

Fig. 4: Transferred manipulations. We provide additional examples to demonstrate
the effectiveness of our method. Our approach successfully tracks complex manipula-
tions involving subtle object movements, such as gently shaking a brush for cleaning
(Fig. (a)), employing non-trivial functional tools (Fig. (b) (c) (e)), and executing bi-
manual cooperation tasks (Fig. (d)). For animated demonstrations, please visit our
website and refer to the accompanying video.

https://meowuu7.github.io/QuasiSim/
https://meowuu7.github.io/QuasiSim/
https://youtu.be/Pho3KisCsu4

Quasi-Physical Simulators for Dexterous Manipulations Transfer 9

Timestamp

Control the mouse using fingers Tend to lose track Use the palm to continue the tracking

Control the mouse using fingers Lose the tracking Cannot recover the failure

Human
Demo

w/o MPC

w/ MPC

Fig. 5: Robustness of MPC. MPC tries to track the object even after experiencing
a dangerous period with the tendency to lose track. While the trajectory yielded by
open-loop optimization fails.

(a) Analytical Sim. (b) Analytical Sim. w/
Residual Physics

(c) Bullet

Fig. 6: Analysis on the residual physics module. In this 10-step transition, the
transformed bunny predicted by the analytical part of the quasi-physical simulator
(purple bunny) only is already close to the GT one (green bunny). The residual physics
can compensate for some unmodeled effects. Hence the result (red bunny) yielded by
the quasi-physical simulator with both the analytical part and the residual physics
module gets closer to the observation in Bullet.

and ttot denote the object translation predicted by the analytical part and the
analytical part with the residual model, respectively. Therefore, the residual ro-
tation is calculated as Rres = RtotR

T , and the residual translation is calculated
as tres = ttot − Rrest. Let Vinit denote the initial object vertices, V represent
the transformed vertices, and Vtot denote the transformed vertices predicted
by the analytical part with the residual model. The average per-vertex position
difference from the transformed object to the initial object is calculated as

pdiff =
1

Nv
∥V −Vinit∥. (7)

Similarly, the average per-vertex position difference from the transformed object
predicted by the total model to the initial object is computed as

ptot
diff =

1

Nv
∥Vtot −Vinit∥. (8)

10 X. Liu et al.

0

0.05

0.1

0.15

0.2

0.25
Rotation
Translation
Per-point Position

‖Δ
𝑞 !
"#
‖

‖Δ
𝑞‖

Fig. 7: Quantitative analysis on the residual physics module.

Finally, the average per-vertex position difference from the transformed object
predicted by the total model to the object predicted by the analytical part is
calculated as:

pres
diff =

1

Nv
∥Vtot −V∥. (9)

For each 10-step transition, we calculate the relative quantities of the three
types predicted by the residual physics, including the object rotation (measured
by angles) angle(Rres)

angle(Rtot)
, object translation tres

ttot
, and the object per-point difference

presdiff
pdiff

, compared to the overall predicted values by the quasi-physical simulator.
As depicted in the bar chart shown in Figure 6, it is evident that the an-

alytical model plays the primary role in predicting state transitions, while the
information predicted by the residual module compensates for the prediction. A
visual example is depicted in Figure 6. The bunny undergoes rotation by a cer-
tain angle in the 10-step transition. The predicted result by the analytical part
only is close to the ground-truth transformed object already. This alignment can
be readily observed by examining the angle between the two ears of the bunny
and the vertical/horizontal line, respectively. The residual physics compensate
for unmodeled effects. Hence the object predicted by the full model is closer to
the ground-truth transition observed in Bullet.
The optimization process in the quasi-physical simulator curriculum.
The quasi-physical simulator curriculum initially relaxes various constraints within
the simulator to alleviate the optimization problem. Subsequently, the physics
constraints are gradually tightened to enable the optimization to converge to-
wards a solution in a more realistic physics model. Fig. 8 illustrates the inter-
mediate optimization process.

During the first optimization iteration, articulated rigid constraints are re-
laxed, and the articulated rigid dexterous hand is represented and driven as a
point set. Then, articulated constraints are imposed. The optimization continues
in the simulator with an increasing contact stiffness (the following three lines in
Fig. 8).

Since the articulated dexterous hand is initially represented as a point set,
comprised of points sampled from the ambient space of the surface mesh, con-

Quasi-Physical Simulators for Dexterous Manipulations Transfer 11

Quasi-Physical
Simulation 1

Quasi-Physical
Simulation 2

Quasi-Physical
Simulation 3

Quasi-Physical
Simulation 4

Timestamp

Fig. 8: Example of the optimization process in the quasi-physical simulator cur-
riculum. Initially, both the contact constraints and the articulated rigid constraints
are relaxed and the object is represented as a point set (the first line). Then the ar-
ticulated rigid constraints are imposed and the contact model is gradually tightened.
The optimization is solved in each of the simulators in the curriculum. We use orange
red color to represent the “activated manipulators”.

tact between the hand and the object may not necessarily be established im-
mediately. This is because contact can occur between points that are distant
from each other, and these points can still act as manipulators. However, even
with the articulated constraints removed during the initial optimization stages,
the optimization process can still be effectively solved due to the softness of the
contact model at the beginning.

As the optimization progresses, we gradually transition towards the final
quasi-physical simulator with articulated rigid constraints and the stiffest con-
tact model. In Fig. 8, we use orange red color to represent the “activated manip-
ulators” — surface points where contact can be established between them and
the object.
Transferred to a robot hand with a significant morphological differ-
ence from the human hand. Utilizing the point set representation, we can
facilitate the transfer of manipulation skills to a morphologically different hand.
We conducted additional experiments aimed at transferring manipulation from
a human hand to a morphologically different robot hand obtained from Diff-
Hand [20]. As shown in Fig. 11 (c), the thumb of the dexterous hand is obviously
shorter than the human hand. Intuitively, completing manipulations using this
hand is difficult. Directly transferring the manipulation via sparse correspon-
dences defined between such two hands (e.g., finger and wrist correspondences
as we have defined between the Shadow hand and the human hand (Fig. 2)) is
not sufficient, leading to missing contacts and unwanted penetrations shown in

12 X. Liu et al.

(a) Missing contacts (b) Penetrations and implausible poses

Fig. 9: Functionally implausible transferred poses via sparse correspondences de-
fined by keypoints.

Human
Demo

Transferred
Manipulation

Rotate the box for an angle Rotate the box back

Timestamp

Fig. 10: Manipulations transferred to a morphologically different dexterous robot
hand. Taking advantage of the point set representation, the manipulation can be easily
transferred to a dexterous hand with an extremely short thumb, which is different from
the original MANO hand.

Fig. 9. However, as shown in Fig. 10, our method can still effectively control it
to complete the box rotation manipulation. Experiments are conducted in the
last quasi-physical simulator from the curriculum.

B.3 Additional Comparisons

The main paper includes comparisons with both model-based and model-free
approaches for solving the manipulation transfer task. For model-free meth-
ods, we compare with the DGrasp series models. The DGrasp series employs
a carefully designed RL-based method for grasping, incorporating well-devised
rewards containing position-to-goal information and contact information. No-
tably, DGrasp’s methodology serves as the foundation for their recent work,
ArtiGrasp [22]. ArtiGrasp extends the manipulation capabilities to articulated
objects and introduces learning techniques such as a gravity curriculum to han-
dle complex relocate-and-articulate task settings. Given the meticulous reward
design, stage-wise learning approach, and subsequent improvements, we consider
DGrasp as a robust RL-based baseline. However, DGrasp is not explicitly de-
signed for the tracking task, as it relies solely on sparse reference frames obtained
from human demonstrations. Therefore, we introduce the improved version of
DGrasp-Tracking as our baseline.

Many works have explored the combination of RL and imitation learning
to leverage human demonstrations for learning robotic manipulation skills [2–
4, 10, 14–16]. In these approaches, human demonstrations are utilized either as

Quasi-Physical Simulators for Dexterous Manipulations Transfer 13

(a) Dynamic MANO hand (b) Shadow hand (b) Amorphologically different robot hand

Fig. 11: Comparisons between the dynamic MANO hand (Fig. (a)) and two simu-
lated robot hands (Fig. (b) (c)) we considered in this work. Compared to the hand
shown in Fig. (c), the Shadow hand is more similar to the human hand, but still with
morphology differences that cannot be ignored. For fine-grained manipulation tasks,
such morphological difference poses significant challenges for transferring. The hand in
Fig. (c) is featured by its extremely short thumb and four other fingers longer than
the human hand. Transferring human demonstrations to this hand is therefore very
difficult. Our flexible point set representation, however, can still work in this case.

Table 1: Additional Comparisons. Quantitative comparisons between our method
and DexMV. Experiments are conducted on sequences from the GRAB dataset in the
Bullet simulator. Bold red numbers for best values.

Object Hand Overall

Method Rerr (◦, ↓) Terr (cm, ↓) MPJPE (mm, ↓) CD (mm, ↓) Success Rate (%, ↑)

DexMV 28.36 2.42 41.53 18.09 11.11/18.52/48.15
Ours 22.38 1.76 35.02 13.62 25.93/37.04/62.96

dense information for the robot to imitate or as sparse reward signals, such as
grasp affordances [2]. However, these methods often struggle with the imbalance
between human-likeness and task completion, leading to biases towards RL-
preferred trajectories.

For the sake of experimental completeness and to showcase the effective-
ness of our strategy in contrast to this trend, we compare our approach with
DexMV [15]. Among its follow-ups and related works [1, 2, 14], DexMV shares
the most similar setting to ours. In DexMV, human demonstrations provide
dense references to shape the reward space for their RL algorithm. Furthermore,
DexMV is openly available, making it conducive for comparative evaluation1.

We compare our method with DexMV (DAPG) on a subset, containing ma-
nipulation sequences from the GRAB dataset, in the Bullet simulator. Table 1
presents the average quantitative results over the tested sequences. Fig. 12 fur-
ther leverages some examples to give an intuitive evaluation. In the challenging
example shown in Fig. 12 (a) with rich and changing contacts, our method can
perform well. However, DexMv struggles to give satisfactory results. In the exam-
ple shown in Fig. 12 (b), we can track the object in a human-like way. However,

1 DexMV’s GitHub Repository Link

https://github.com/yzqin/dexmv-sim?tab=readme-ov-file

14 X. Liu et al.

TimestampTimestamp

Human
Demo

DexMV

Ours

(a) Functional tool-using (stapler) (b) Rotating the mouse

Fig. 12: Visual comparisons between our method and DexMV. We can complete the
tracking in a human-like way. However, DexMV cannot fulfill this vision. Its resulting
trajectory may deviate from the human demonstration obviously, as observed in both
Fig. (a) and (b). Besides, it struggles with the challenging example shown in Fig. (a)
with rich and changing contacts.

though DexMV can complete the object tracking task to some extent, the result-
ing hand trajectory significantly deviates from the human hand demonstration.

Timestamp

Human
Demo

Ours

Human
Demo

Ours

(a) Manipulating the watch

(b) Interaction with a thin plank

Fig. 13: Failure cases analysis. Fig. (a): The hand fails to grasp the wristwatch,
which requires us to control several fingers to pass through the ring of the wristwatch.
Fig. (b): The hand fails to find a good strategy for lifting the thin plank.

B.4 Failure Cases

In this section, we delve into the failure cases encountered by our method despite
its effectiveness on many sequences. Our method may falter in controlling a

Quasi-Physical Simulators for Dexterous Manipulations Transfer 15

simulated robot hand to track manipulation demonstrations in the following
scenarios:

– Manipulations requiring highly precise control, such as threading fingers
through a ring for future actions (Fig. 13 (a));

– Interactions with a nearly two-dimensional, very thin object (Fig. 13 (b)).

As depicted in Fig. 13 (a), effectively controlling multiple fingers of the hand to
pass through the ring of a wristwatch for secure attachment to the palm poses
a significant challenge. Presently, our method struggles to provide satisfactory
solutions for such cases, possibly due to morphological disparities between the
human hand and the robot hand. These differences make it difficult to replicate
human-like actions with the robot hand. Additionally, we encounter difficulties
achieving desirable outcomes when interacting with extremely thin objects, es-
pecially when one dimension of the object scales down to near-zero, as illustrated
in Fig. 13 (b). Such challenging object shapes make it challenging to devise an
effective lifting strategy.

B.5 User Study

We conduct a supplementary user study to complement the quantitative and
qualitative evaluations presented in the main paper, website, and supplemen-
tary video, aiming to comprehensively assess and compare the quality of our
transferred manipulations with those of the baseline method, DGrasp-Tracking.
Our user study is hosted on a website, where the results of our method and
DGrasp-Tracking on 10 sequences are presented in a randomly permuted order.
Ten participants, regardless of their familiarity with the task or expertise in com-
puter science, are asked to rate each clip on a scale from 1 to 5 to indicate their
preferences. Specifically, “1” indicates a significant difference between the trans-
ferred motion and the reference motion, “3” represents the manipulation task
is completed to some extent but the hand motion deviates obviously from the
reference motion, “5” indicates a delicately controlled motion with a good task
completeness and human-likeness. Intermediate values of "2" and "4" represent
in-between assessments.

For each clip, we calculate the average score achieved by our method and
DGrasp-Tracking. The average and median scores across all clips are summarized
in Table 2. The results show the significant superiority of our method over the
baseline method.

C Experimental Details

C.1 Datasets

Evaluation data comes from three datasets, namely GRAB [18], containing
single-hand interactions with daily objects, TACO [12], containing humans ma-
nipulating tools, and ARCTIC [7] with bimanual manipulations. We’ll publicly
release the dataset for future research.

16 X. Liu et al.

Table 2: User study.

Ours DGrasp-
Tracking

Average Score 4.00 2.06

Median Score 3.95 2.10

Table 3: Default parameter settings of the quasi-physical simulator curriculum.

Object box capsulemachine espressomachine ketchup laptop microwave mixer phone scissors waffleiron

Subject ID 1 5 6 7 4 1 5 7 4 2

GRAB [18]. We randomly randomly sample a manipulation trajectory for each
object. If its manipulation is extremely simple, we additionally sample one tra-
jectory for it. The object is not considered if its corresponding manipulation is bi-
manual such as binoculars, involves other body parts such as bowl, or with de-
tailed part movements such as the game controller. Finally, manipulations with
the following objects are included in our dataset: mouse, flashlight, stapler,
hammer, torus, stanfordbunny, pyramid, cylinder, airplane, train, mouse
(resampled), cube, watch, waterbottle, phone, sphere, mug, alarmclock, knife,
fryingpan, cup, duck, elephant, lightbulb, scissors, toothbrush, toothpaste.
For each sequence, we take the first approach-action clip with the length of 60
frames. The number of manipulation sequences from GRAB is 27.

Fig. 14: Snapshots from the TACO dataset.

TACO [12]. For TACO, we acquire data by contacting authors. We randomly
select one sequence for each right-hand tool object, a few snapshots are presented
in Fig. 14. Sequences with very low quality like erroneous object motions are
excluded. For each trajectory, we take the first approach-action clip with the
maximal length set to 150 frames. 14 trajectories in total are selected finally.
ARCTIC [7]. For ARCTIC, we randomly select one sequence for each object
from its available manipulation trajectories, resulting in 10 sequences in total.
For each trajectory, we take the first approach-action clip with the maximal

Quasi-Physical Simulators for Dexterous Manipulations Transfer 17

length set to 150 frames. The object names and the corresponding subject in-
dexes are summarized in Table 3. Please note that subject s08 and s09 only have
“use” actions. Besides, some “grab” sequences are missing in a specific subject’s
manipulation sequences. For instance, both s01 and s06 do not have “grab”
manipulations with box.

Object 𝑓!

𝑓"

Unstable forcesNot a grasping frame

Object 𝑓!

𝑓"

Stable forcesA grasping frame

(a) An invalid grasping frame (b) A valid grasping frame

Fig. 15: Grasping frame. We leverage a simple strategy to find the first grasping
frame from the sequence. A valid grasping frame should have at least two contact
points. The contact force directions should be able to stabilize the object, i.e., there
exists a solution for their magnitudes so that zero force and zero torque are applied to
the object.

C.2 Baseline

DGrasp-Base [5]. We use the official code provided by authors2. We adapt the
codebase to two simulated environments used in our evaluation, Bullet [6] and
Isaac Gym [13]. Using DGrasp’s method to complete the tracking task requires
us to define reference grasping frames. We leverage a heuristic method and take
the first grasp frame as the reference frame, illustrated in Fig. 15. Specifically, the
first grasp is the first frame in the sequence satisfying the following conditions:
1) at least two contacts are detected between the hand and the object, 2) all
contact force directions can form a force closure, that is there exists a solution for
their magnitudes so that the object is stable under such contact forces. Having
defined the reference grasping frame, we train the manipulation policy using
the original DGrasp’s method. Initially, only the grasping policy is activated.
The grasping module guides the hand towards the object to find a stable grasp
according to the defined reference frame. After that, the grasping policy and the
control policy cooperate to move the object to the final 6D pose. Our method
can find a successful policy on DGrasp’s “021_bleach_dexycb” example in two
simulated environments using the dynamic MANO hand [5].
DGrasp-Tracking (improved from DGrasp [5]). We set a series of reference
frames from the sequence, where every two reference frames are separated by 10
frames. We use the grasping policy to guide the hand toward each reference
frame.

2 DGrasp’s GitHub Repository.

https://github.com/christsa/dgrasp

18 X. Liu et al.

DGrasp-Tracking (w/ curric.). We gradually train DGrasp-Tracking in each
of the simulators from the quasi-physical simulators, finally in the tested simu-
lator. The curriculum setting is the same as that listed in Table 4.
ControlVAE [21]. We adapt the official release3 to the manipulation scenario.
The world model approximates state transitions. It takes the current state, com-
posed of the articulated dexterous robot hand joint state (including the first
6-DoF global rotations and translations), the object state, including the 4-dim
object orientation represented as a quaternion, and the 3-DoF object transla-
tion, and control signals, including the velocity and position controls for each
hand joint, as input. It outputs the predicted delta hand joint states and the pre-
dicted object delta rotations (3-DoF) as well as the delta translations (3-DoF).
Following ControlVAE [21], the world model is an MLP. We increase the network
depth, resulting in an MLP with 9 layers in total. The first hidden dimension
is 256, followed by 6 layers with the hidden dimension of 512, 1 layer with the
hidden dimension of 256, and the output layer. ReLU is used as the activation
function between each hidden layer. The policy network takes the current state,
including the hand joint state, object orientation as well as object rotation, and
the target state, including the target hand joint states, target object orienta-
tion as well as the target object rotation as input. It predicts control signals
for the articulated hand, including the position and velocity controls for each
hand joint. The policy network is an MLP. The number of layers and the hidden
dimension settings are the same as the world model. Length of the replay buffer
is set to 1024. For Bullet, the batch size is set to 1. At each training loop, the
world model is trained for 256 steps, followed by training the policy network for
256 steps. For Isaac Gym, the batch size is set to 128. At each training loop,
the world model is trained for 8 steps, followed by training the policy network
for 8 steps. Rollout lengths for the world model and for the policy are 24 and 19
respectively. The number of the maximum training iterations is set to 30000.
MPC (w/ base sim.). The base simulator is the final analytical part of the
quasi-physical simulator of the physics curriculum. Articulated rigid constraints
are imposed. The spring-damper contact model is tuned to the stiffest level.
Please refer to Table 4 for the setting of this simulator.
MPC (w/ base sim. w/ soften). Based on the base simulator, we introduce
the soften strategy present in Bundled Gradients [17]. Penalty-based contacts are
smoothed by sampling contact spring coefficients, as stated in Section IV.B [17].
The sampling range for each coefficient is defined as the [-10%, +10%] interval
of the original value.

C.3 Experimental Settings

The quasi-physical simulator curriculum. By default, the curriculum is
composed of ten parameterized quasi-physical simulators. We summarize their
parameter settings in Table 4. The contact distance threshold dc, contact spring

3 ControlVAE’s GitHub Repository.

https://github.com/heyuanYao-pku/Control-VAE

Quasi-Physical Simulators for Dexterous Manipulations Transfer 19

Table 4: Default parameter settings of the quasi-physical simulator curriculum.

Simulator ID 1 2 3 4 5 6 7 8 9 10

Point Set
Parameter α

0.1 0 0 0 0 0 0 0 0 0

Contact Distance
Threshold dc

0.1 0.1 0.05 0.03 0.025 0.02 0.015 0.01 0.0 0.0

Contact Spring
Stiffness kn 4× 104 4× 104 8× 104 1× 105 2× 105 3× 105 3.5× 105 4× 105 4× 106 4× 106

Friction Spring
Stiffness kf 1× 105 1× 105 2× 105 4× 105 5× 105 6× 105 8× 105 1× 106 1× 107 1× 107

Contact Damping
Coefficient kd 1× 103 1× 103 1× 103 1× 103 1× 103 1× 103 1× 103 1× 103 1× 103 1× 103

w/ Residual Physics? No No No No No No No No No Yes

Table 5: Curriculum parameter settings used in the ablated version (Ours w/ Cur-
riculum II).

Simulator ID 1 2 3 4 5 6 7

Point Set
Parameter α

0.1 0 0 0 0 0 0

Contact Distance
Threshold dc

0.1 0.1 0.05 0.02 0.01 0.0 0.0

Contact Spring
Stiffness kn 4× 104 4× 104 8× 104 3× 105 4× 105 4× 106 4× 106

Friction Spring
Stiffness kf 1× 105 1× 105 2× 105 6× 105 1× 106 1× 107 1× 107

Contact Damping
Coefficient kd 1× 103 1× 103 1× 103 1× 103 1× 103 1× 103 1× 103

w/ Residual Physics? No No No No No No Yes

stiffness kn, friction spring stiffness kf , and contact damping coefficient kd are
set empirically.

For the ablated version (“Ours w/ Curriculum II” in the ablation study), we
remove some stages from the original curriculum. The setting is summarized in
Table 5.
Quasi-physical simulators. We use Python to implement each component
of the simulator and the simulation processes, including the articulated rigid
dynamics, the point set dynamics, the spring-damper contact modeling, and
the residual physics modules. Semi-implicit time-stepping is leveraged. Time
stepping is set to 5×10−4 with 100 substeps per frame. In this way, we can easily
introduce neural network components into the simulator. Besides, one can easily
integrate it into a deep learning framework for further applications. Moreover,
we can calculate gradients automatically taking advantage of the auto-grading
feature of the framework. The overall efficiency, though has a large improvement
space, is acceptable in our task.
Converting meshes to SDFs. We use Mesh2SDF [19] in this process.
Parameters set S. The parameter set S includes object properties, i.e., ob-
ject mass and object inertia, and some unknown system parameters, i.e., linear
velocity sampling coefficient and angular velocity damping coefficient. For the

20 X. Liu et al.

friction coefficient, we set it to a fixed value, i.e., µ = 10. The value is set under
the consideration of the important role friction forces play in the manipulation
task.
Controlling the hand in Bullet and Isaac Gym. In our quasi-physical
simulator, the hand is controlled via joint forces and root linear and angular
velocities. In Bullet and Isaac Gym, people commonly use PD controls, which
are also recommended officially [6]. Therefore, to convert controls in joint forces
and root velocities to PD controls in the them, we additionally add a control
transformation module.

For each timestep 1 ≤ n ≤ N − 1, it takes root positions at the timestep
n and n + 1, joint states, velocities, joint forces, and the object state at step n
and outputs the residual position and velocity controls at step n. The predicted
residual PD controls added to the root positions, root velocities (calculated via
finite differences), joint states, and velocities are treated as PD controls in the
target simulator. The control transformation module is composed of a hand
point feature extraction layer, an object feature extraction layer, and a predic-
tion layer. The current hand and object geometry is firstly encoded in latent
features. Subsequently, the original joint control related information and the
encoded latent features are fed into an MLP for residual position and velocity
control prediction. The feature extraction layer is a 3-layer MLP with hidden
dimensions [128, 128, 128] and ReLU as the activation layer. After per-point fea-
ture extraction, a maxpool function operates on point features to extract global
features for the hand and the object. Then the global features of the hand and
the object are concatenated together and passed through a two-layer MLP with
hidden dimension 128 and the output dimension 128 as well. The output fea-
ture is then concatenated with the object control related information and passed
through an MLP for the residual control prediction. The prediction network is a
3-layer MLP with hidden dimension [128, 64]. The control transformation mod-
ule is optimized together with the residual physics module introduced in the
parameterized quasi-physical simulator.
World model-style training. Rollout lengths for both the trajectory opti-
mization and the model training are set to 19. In each iterative training iteration,
the trajectory is optimized for 256 steps. The residual physics module is opti-
mized for 256 steps. The replay buffer length is 1024.
Evaluation process. Our method is a multi-stage optimization-based strategy.
The overall optimization process can be roughly divided into three stages, as
illustrated in the following:

– Transferring via point dynamics. This stage involves three processes:
• Optimize a dynamics MANO [5] trajectory that can track the input

kinematics-only trajectory;
• Optimize the control trajectory for the point set of the MANO hand

that can track the hand trajectory and the object trajectory;
• Optimize a kinematics-only trajectory for the simulated robot hand so

that it can track the kinematic hand trajectory via sparse correspon-
dences;

Quasi-Physical Simulators for Dexterous Manipulations Transfer 21

• Optimize the control trajectory for the point set of the simulated robot
hand so that it can track the trajectory of the MANO’s point set.

– Optimizing through a contact curriculum. In this stage, the control
trajectory of the simulated robot hand is optimized in each simulator from
the curriculum. The objective is to track the hand trajectory and the object
trajectory.

– Transferring to a realistic simulated environment. In this stage, the
quasi-physical simulator and the control trajectory for the simulated robot
hand are iteratively optimized. By default, the number of iterations is set to
30,000.

In each optimization iteration, excluding the kinematics trajectory-only opti-
mization, the parameter set S and the control trajectory are optimized alter-
nately. If we cannot inherit a control trajectory from the previous stage, we first
optimize the it with the parameters S either inherited from previous stages or set
to default values. After that, the parameters ∫ are further refined with controls
fixed. Subsequently, we continue to optimize controls based on the identified pa-
rameters. If the control trajectory can be inherited from previous stages at the
beginning of the iteration, the parameters S are identified with controls fixed.
Then we further refine controls with parameters fixed. Typically, the number of
optimization steps for the parameters is 1000, while the number is 100 for the
control trajectory. Both hand controls and parameters are optimized via gradient
descent. Learning rate is set to 5×10−4 for both control optimization and param-
eters identification. We use Adam optimizer. No learning rate scheduler is used.
In the third stage, we follow the training framework in ControlVAE [21]. The
optimizer is RAdam, with the learning rate 10−4 for the quasi-physical simulator
and 10−4 for control trajectory optimization.

C.4 Running Time and Complexity

Complexity. The time complexity is related to the number of frames in the
manipulation sequence and the number of optimization passes. Denote the num-
ber of frames as N and the number of total optimization passes as K, the time
complexity is O(KN).
Running time. Taking a sequence with 60 frames as an example, the first stage
(see evaluation process stated in the previous section) costs about 7 hours in
total. Using the default curriculum setting (Table 4), the second stage would
cost about 22 hours. Early termination logic in each optimization iteration will
shorten the time. Therefore, the actual time is per-sequence dependent. Taking
transferring to the Bullet simulator as an example, the third stage takes about
20 hours to complete. Reducing the number of simulators in the curriculum or
using a smaller number of iterations in the third stage can improve the time
efficiency.

22 X. Liu et al.

D Potential Negative Societal Impact

Our approach has the potential to expedite the advancement of robotic dexterous
manipulation skills. However, in the future, the emergence of highly developed
robots proficient in performing various tasks may lead to the replacement of
certain human labor, thus potentially impacting society.

References

1. Arunachalam, S.P., Silwal, S., Evans, B., Pinto, L.: Dexterous imitation made
easy: A learning-based framework for efficient dexterous manipulation. In: 2023
ieee international conference on robotics and automation (icra). pp. 5954–5961.
IEEE (2023) 13

2. Bahl, S., Mendonca, R., Chen, L., Jain, U., Pathak, D.: Affordances from human
videos as a versatile representation for robotics. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 13778–13790 (2023)
12, 13

3. Bharadhwaj, H., Gupta, A., Kumar, V., Tulsiani, S.: Towards generalizable
zero-shot manipulation via translating human interaction plans. arXiv preprint
arXiv:2312.00775 (2023) 12

4. Chen, G., Cui, T., Zhou, T., Peng, Z., Hu, M., Wang, M., Yang, Y., Yue, Y.:
Human demonstrations are generalizable knowledge for robots. arXiv preprint
arXiv:2312.02419 (2023) 12

5. Christen, S., Kocabas, M., Aksan, E., Hwangbo, J., Song, J., Hilliges, O.: D-grasp:
Physically plausible dynamic grasp synthesis for hand-object interactions. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion. pp. 20577–20586 (2022) 5, 17, 20

6. Coumans, E., Bai, Y.: Pybullet, a python module for physics simulation for games,
robotics and machine learning (2016) 17, 20

7. Fan, Z., Taheri, O., Tzionas, D., Kocabas, M., Kaufmann, M., Black, M.J., Hilliges,
O.: ARCTIC: A dataset for dexterous bimanual hand-object manipulation. In: Pro-
ceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(2023) 15, 16

8. Featherstone, R.: Rigid body dynamics algorithms (2007), https://api.
semanticscholar.org/CorpusID:58437819 4

9. Garcia, C.E., Prett, D.M., Morari, M.: Model predictive control: Theory and prac-
tice—a survey. Automatica 25(3), 335–348 (1989) 6

10. Guo, D.: Learning multi-step manipulation tasks from a single human demonstra-
tion. arXiv preprint arXiv:2312.15346 (2023) 12

11. Liu, C.K., Jain, S.: A quick tutorial on multibody dynamics. Online tutorial, June
p. 7 (2012) 4

12. Liu, Y., Yang, H., Si, X., Liu, L., Li, Z., Zhang, Y., Liu, Y., Yi, L.: Taco: Bench-
marking generalizable bimanual tool-action-object understanding. arXiv preprint
arXiv:2401.08399 (2024) 15, 16

13. Makoviychuk, V., Wawrzyniak, L., Guo, Y., Lu, M., Storey, K., Macklin, M.,
Hoeller, D., Rudin, N., Allshire, A., Handa, A., et al.: Isaac gym: High performance
gpu-based physics simulation for robot learning. arXiv preprint arXiv:2108.10470
(2021) 17

https://api.semanticscholar.org/CorpusID:58437819
https://api.semanticscholar.org/CorpusID:58437819

Quasi-Physical Simulators for Dexterous Manipulations Transfer 23

14. Qin, Y., Huang, B., Yin, Z.H., Su, H., Wang, X.: Dexpoint: Generalizable point
cloud reinforcement learning for sim-to-real dexterous manipulation. In: Conference
on Robot Learning. pp. 594–605. PMLR (2023) 12, 13

15. Qin, Y., Wu, Y.H., Liu, S., Jiang, H., Yang, R., Fu, Y., Wang, X.: Dexmv: Imitation
learning for dexterous manipulation from human videos. In: European Conference
on Computer Vision. pp. 570–587. Springer (2022) 12, 13

16. Shaw, K., Bahl, S., Pathak, D.: Videodex: Learning dexterity from internet videos.
In: Conference on Robot Learning. pp. 654–665. PMLR (2023) 12

17. Suh, H.J.T., Pang, T., Tedrake, R.: Bundled gradients through contact via random-
ized smoothing. IEEE Robotics and Automation Letters 7(2), 4000–4007 (2022)
18

18. Taheri, O., Ghorbani, N., Black, M.J., Tzionas, D.: Grab: A dataset of whole-
body human grasping of objects. In: Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part IV 16. pp. 581–
600. Springer (2020) 15, 16

19. Wang, P.S.: Mesh2sdf: Converts an input mesh to a signed distance field (2022),
https://github.com/wang-ps/mesh2sdf 19

20. Xu, J., Chen, T., Zlokapa, L., Foshey, M., Matusik, W., Sueda, S., Agrawal, P.: An
end-to-end differentiable framework for contact-aware robot design. arXiv preprint
arXiv:2107.07501 (2021) 11

21. Yao, H., Song, Z., Chen, B., Liu, L.: Controlvae: Model-based learning of generative
controllers for physics-based characters. ACM Transactions on Graphics (TOG)
41(6), 1–16 (2022) 18, 21

22. Zhang, H., Christen, S., Fan, Z., Zheng, L., Hwangbo, J., Song, J., Hilliges, O.:
Artigrasp: Physically plausible synthesis of bi-manual dexterous grasping and ar-
ticulation. arXiv preprint arXiv:2309.03891 (2023) 12

https://github.com/wang-ps/mesh2sdf

	Parameterized Quasi-Physical Simulators for Dexterous Manipulations Transfer Supplementary Materials

