
Few-Shot Physically-Aware Articulated Mesh Generation
via Hierarchical Deformation

Supplementary Materials

The appendix provides a list of supplemental materials
to support the main paper.

• Further Explanations on the Method – We provide
additional details for some components and algorithms
to complement the main paper.

– Convex-Level Deformation Generative Model
(Sec. A.1). We include a more detailed expla-
nation regarding the model including two tricks
we use to parameterize deformations

– Convex Deformation Synchronization (Sec. A.2).
We explain our alternative optimization strategy
to calculate synchronization matrices in more de-
tail.

– Physics-Aware Deformation Correction
(Sec. A.3). We explain the calculation pro-
cesses of the physical penalty Lphy and the
projection loss Lproj in more detail.

– Additional Explanations (Sec. A.4). We include
more details regarding the practical implementa-
tion of the method.

• Additional Experiments – We present additional ex-
periments to further prove the effectiveness of our
method.

– Few-Shot Mesh Generation (Sec. B.1). We fur-
ther examine the few-shot generation ability of
our hierarchical deformation strategy by testing
it on different few-shot generation settings and
also on rigid mesh categories.

– Transfer Learning for Convex Deformations
(Sec. B.2). We demonstrate why we choose to
use convexes as intermediates to transfer cross-
category shared shape patterns. Besides, we also
explore the influence of source categories in the
transfer learning on the few-shot generation per-
formance.

– Generation via Deformation (Sec. B.3). We
leverage a different mesh generation technique
and design a second approach trying to solve
the problem. By comparing this strategy to our
method, we cast some thoughts on the design phi-
losophy of strategies to solve the few-shot and

physically-aware generation challenges.
• Experimental Settings – We provide additional in-

formation about our experimental settings.
– Datasets (Sec. C.1). We provide more informa-

tion on our datasets for pre-training and evalua-
tion.

– Baselines (Sec. C.2). We explain our modifica-
tions and improvements on baseline methods so
that we can adapt them to the articulated mesh
generation problem.

– Metrics (Sec. C.3). We provide additional calcu-
lation details of the evaluation metrics.

– Additional Experimental Settings (Sec. C.4). We
further discuss some additional experimental set-
tings.

Project page with code is available at
meowuu7.github.io/few-arti-obj-gen.

A. Further Explanations on the Method
A.1. Convex-Level Generative Model

In the method, we design a convex-level generative
model to parameterize vertex-level deformation offset dc
into a low dimensional space. We leverage two tricks to
parameterize dc: 1) using cages to control per-vertex defor-
mations and 2) using dictionaries to record common defor-
mation patterns. We elaborate on details of the above tricks
that are not covered in the main text in the following text.

Cages to control convex deformation. To form the
cage tc of the convex c containing Nc vertices, we de-
form a template mesh based upon the shape of the con-
vex c. Specifically, given a template mesh, i.e., a sphere
surface mesh, tc with Nt(Nt ≪ Nc) vertices, we deform
tc to form the cage of c via the following steps: 1) As-
sume the vertex sets of tc and c are Vt and Vc respec-
tively. Find a mapping from each cage vertex, saying
vt ∈ Vt, to a vertex vc in the convex c, i.e., m(vt) =
vc, vt ∈ Vt, vc ∈ Vc(m(vt1) ̸= m(vt2),∀vt1 ̸= vt2)
such that we can minimize

∑
vt∈Vt

∥m(vt)− vt∥2. We use
“linear sum assignment” function implemented in package
“scipy” to find the mapping m(·). 2) Deform vt to v̂t =

1

https://meowuu7.github.io/few-arti-obj-gen/

vt + (1 − ϵ) · (m(vt) − vt), where ϵ is a hyper-parameter,
which is set to 0.05 in our experiment.

Such a heuristic deformation strategy works well in our
problem considering shapes we want to deform here are
near-to-convex segments.

Using dictionaries to record common deformation pat-
terns. We record common cage deformation patterns using
deformation bases. Following a previous work which also
learns deformation bases to represent common deformation
patterns [6], we wish the deformation basses predicted by
our network for each cage should be able to cover the entire
deformation space such that each possible cage deforma-
tion can be decomposed into a linear combination of these
bases. It is encouraged by our learning objective guided via
the convex deformation loss LC that minimizes the Cham-
fer Distance between each deformed convex and the target
convex. The Chamfer Distance between two convexes is
defined on 4096 points sampled from their surfaces.

At the same time, we wish deformation bases predicted
by our network to have the following two properties: 1)
Deformation bases should be relatively orthogonal to each
other to avoid recording redundant deformation patterns and
to cover independent deformation patterns. 2) Deformation
bases should be in a low dimensional space, activating as
few vertices as possible. Therefore, we further add an or-
thogonal loss Lorth and a sparse loss Lsp for regulariza-
tion purpose, following [6]. Among them, Lorth penalizes
“dot products” between different deformation bases. And
Lsp penalizes the l1-norm of each deformation basis. Such
two penalties are added as additional regularization to op-
timize the hierarchical deformation-based generative model
together with LC and the physical penalty term Lphy .

A.2. Convex Deformation Synchronization

After learning the conditional generative model for each
convex c, we further design a convex deformation syn-
chronization strategy to compose all the individual convex
deformation spaces to the whole mesh-level deformation
space. Given a set of articulated object meshes A from a
certain category and an articulated mesh a ∈ A, assuming
the mesh a is segmented into M convexes and each con-
vex is equipped with a deformation model gC(zcm |cm), our
goal is to replace zcm with Scmz so that sampling the shared
noise parameter z results in a globally consistent mesh de-
formation. To compute the synchronization transformation
Scm , we consider the deformation from a to other articu-
lated meshes ai ∈ A. In particular, for each ai, we op-
timize for a set of deformation coefficients {yi

m} so that
each convex cm in mesh a could deform into the corre-
sponding convex cim in mesh ai following the deformation
model gC(zcm |cm, zcm = yi

m). We can then estimate the
synchronization transformations {Scm} by solving the fol-

lowing optimization problem:

minimize
{Scm},{zi}

|A|∑
i=1

M∑
m=1

∥BcmScmzi −Bcmyi
m∥2, (1)

where Bcm is the deformation bases of convex cm and zi is
a global deformation coefficient from mesh a to ai shared
across all convexes. We solve the above optimization prob-
lem via alternatively optimizing the synchronization trans-
formations {Scm} and the global deformation coefficients
{zi}.

Specifically, we optimize equation 1 by alternatively tak-
ing the following two steps:

• Fix {Scm}, optimize each global deformation coeffi-
cient zi from a to ai via the global deformation coef-
ficients optimization algorithm 2. The algorithm takes
the convex deformation bases {Bcm}, current synchro-
nization transformations {Scm}, and convex deforma-
tion coefficients {yi

m} as input, and outputs the opti-
mized zi.

• Fix {zi}, optimize each synchronization transforma-
tion Scm for each convex cm via the synchronization
transformation matrices optimization algorithm 1. It
takes the convex deformation bases {Bcm}, current
global deformation coefficients {zi}, and convex de-
formation coefficients {yi

m} as input, and output the
optimized Scm .

By looping the above two optimization steps several
times (i.e., 100 in our implementation), we finally get the
optimized synchronization transformation matrices {Scm}
and global deformation coefficient {zi}. Then the distribu-
tion of the global shape deformation coefficient z is mod-
eled by a mixture of Gaussian fit to the optimized {zi}.

Please note that the above approach (Algorithm 1, 2)
is an approximate solution and is not affected by {Bcm}.
However, {Bcm} indeed influence the optimization objec-
tive outlined in Eq. 2 in the main text and cannot be omitted.

Algorithm 1 Synchronization transformation matrices
optimization.
Input: Deformation bases for each convex {Bcm}. Global deformation

coefficients {zi} from a to other articulated meshes {ai}. Deforma-
tion coefficients {yi

m} from each convex cm to the corresponding
convex of the articulated mesh ai.

Output: Synchronization transformation matrix Scm of the convex cm.
1: Z← Stack({zi})
2: Ym ← Stack({yi

m})
3: [U,Σ,VT]← SVD(Z)
4: [Um,Σm,VT

m]← SVD(Ym)
5: Scm ← UmΣmVT

mVΣ+UT

6: return Scm

Algorithm 2 Global deformation coefficients optimiza-
tion. “lsq” denotes the least square solver.
Input: Deformation bases for each convex {Bcm}. Synchronization

transformations {Scm}. Deformation coefficients yi
m from each con-

vex cm to the corresponding convex of the articulated mesh ai.
Output: Global deformation coefficients zi from a to ai.
1: Szi ← ∅
2: for m = 1 to M do
3: ẑim ← lsq(Scm , zim)
4: Szi ← Szi ∪ {ẑim}
5: zi = Average(Szi)
6: return zi

A.3. Physics-Aware Deformation Correction

In our method, we further add a physics-aware deforma-
tion correction scheme to 1) encourage the hierarchical de-
formation model to generate physically-realistic deforma-
tions and 2) optimize synthesized articulated meshes such
that they can support correct articulation functions.

We leverage physical simulation and a collision
response-based shape optimization strategy to realize this
vision. Two losses are involved in the correction strategy:
1) a physical penalty termLphy measuring self-penetrations
and 2) a projection loss Lproj guiding how to project pene-
trated vertices to resolve observed penetrations.

We implement Lphy and Lproj manually with no simu-
lators. Given an articulated mesh a, we illustrate the details
of their computing process in Algorithms 3 4.

For each category, the K articulation states is formed by
C independent articulation chains. Each articulation chain
consists of a moving part pmov and other static parts in their
specific articulation states. pmov is articulated through the
whole articulation range when articulating the object by the
articulation chain. However, the valid articulated states for
resting parts may vary across different categories. For eye-
glasses, when articulating one leg, the other one should be
put into 0 degree or 90 degree.

Algorithm 3 Single simulation. Single-part articulation
simulation losses. “NONE MOTION” indicates fixed parts.
Input: Part mesh pmov = (Vmov ,Emov) to articulate at the rest pose;

Convex mesh pref = (Vref ,Eref); The number of simulation steps
for this moving part in the current convex Ns. Joint information set J
of the moving part pmov .

Output: Average penetration depth APD (Lcurphy) for this part pmov in
the current context. Projection loss Lcurproj for this part pmov in the
current context.

1: if J .moving type == NONE MOTION then
2: return 0 , 0
3: Nref ← Face-Normal(Vref ,Eref)
4: d0 ← Vertex-Face-Distance(Vmov ,Vref ,Eref ,Nref)
5: S0 ← Sign(d0)
6: Sphy ← ∅
7: Sproj ← ∅
8: Let [l, u] be the articulation range of pmov which is contained in the

joint information J
9: for t = 1 to Ns do

10: st ← l + (u− l) · t
Ns

11: ptmov = (Vt
mov ,Emov) ←

Articulation-Simulation(Vmov , st,J)
12: Dt ← Vertex-Face-Distance(Vt

mov ,Vref ,Eref ,Nref)
13: St ← Sign(Dt)
14: Ct ← Vertices-In-Faces(Vt

mov ,Vref ,Eref)
15: Ct ← Ct ∧ (St ̸= St−1)
16: PeneD(ptmov , pref)← Mean(Ct ·Dt · St, dim = 0, 1)
17: Sphy ← Sphy ∪ {PeneD(ptmov , pref)}
18: ∆Vmov ← Vt

mov −Vt−1
mov

19: ProjD(ptmov , pref) ← Mean(Sum(Expand(∆Vmov , dim =
1) · Expand(Ct · Dt, dim=2) · Expand(Nref , dim = 0), dim =
2), dim = 0, 1)

20: Sproj ← Sproj ∪ {ProjD(ptmov , pref)}
21:
22: Lcurphy ← Average(Sphy)
23: Lcurproj ← Average(Sproj)
24: return Lcurphy , Lcurproj

Algorithm 4 Physics-aware losses.
Input: An articulated mesh a with a set of moving parts {p1, ..., pkp}

and their joint information {J1, ...,Jkp}, where kp is the number of
parts in a. Number of simulation steps Ns for a single part articula-
tion simulation process, i.e., moving one part when other parts are put
into a specific articulated state. The number of single-part articulation
simulation processes Ndet for each part.

Output: Average penetration depth APD (Lphy). Projection loss Lproj .
1: Sphy ← ∅
2: Sproj ← ∅
3: for pmov = p1 to pkp do
4: for istep = 1 to Ndet do
5: Sample an articulation state for each part expect for pmov :
{sp|p ∈ {p1, ..., pkp}, p ̸= pmov}

6: Put parts except for pmov into their sampled states; Put pmov

into its rest articulation state.
7: pref ← Merge-Meshes({p1, ..., pkp} \ {pmov})
8: Lcurphy ,L

cur
proj ← Single-Simulation(pmov , pref , Ns,Jpmov)

9: Sphy ← Sphy ∪ {Lcurphy}
10: Sproj ← Sproj ∪ {Lcurproj}
11:
12: Lphy ← Average(Sphy)
13: Lproj ← Average(Sproj)
14: return Lphy , Lproj

How to use Lproj to optimize the articulated mesh a?
Since the calculation process of Lproj is differentiable, we
can update shape a by back-propagating Lproj to update the
global shape deformation parameter z. Specifically, we cal-
culate the gradient of Lproj over z, which can be easily re-
alized by the support of PyTorch’s “autograd” package, and
then update z via the gradient, i.e., z ← z − ϵproj ∂Lproj

∂z .
ϵproj serves as the “learning rate” for the deformation co-
efficient z here and is set to 10−4 at the training time and
10−5 at the inference/sampling time in our implementation.

A.4. Additional Explanations

Mesh smooth layer. Directly composing deformed con-
vexes together for object-level meshes would usually lead
to unwanted artifacts near convex edges, as shown in each
middle one of every three shapes in Figure 1. To tackle this
issue and to produce smooth object-level meshes, we add a
smooth layer following [3], resulting in the rightmost shape
in every three shapes drawn in Figure 1.

B. Additional Experiments
B.1. Few-Shot Mesh Generation

We further discuss our few-shot mesh generation per-
formance from the following aspects to validate the mer-
its of our hierarchical mesh deformation-based generative
scheme:

• Few-shot generation performance w.r.t. the number of
observed reference examples (#Shots);

• Few-shot generation performance on rigid categories;
• Additional results on human bodies.

Few-shot generation performance w.r.t. #Shots. For
Scissors, Eyeglasses, and TrashCan containing relatively
rich objects, we try to vary the value of the number of
observed examples (#Shots) and compare the performance
achieved by different methods on each few-shot setting. We
consider three additional settings, namely 2-shots, 4-shots,
and 8-shots. To make results comparable across differ-
ent few-shot settings, we use the same test set for all of
those settings. From Table 1, 2, 3, we can observe that
our method can consistently outperform baseline strategies.
It successfully guides the model to generate diverse sam-
ples even under the 2-shots setting, bypassing baselines by
a large margin, e.g., 189% relatively higher coverage ratio
than DeepMetaHandles on the Eyeglasses category. Notice
that it is not at a cost of sacrificing the mesh quality, i.e., we
can achieve the lowest MMD scores at the same time on all
of those three categories.

Further, as a general empirical rule observed from the
results, more observed examples would always lead to bet-
ter few-shot generation performance, guiding the model to
generate visually plausible samples with higher diversity. It

aligns well with our intuitions and also conclusions made in
few-shot image generation works [5, 4].

Few-shot generation performance on rigid mesh cate-
gories. To further prove the effectiveness of our hierarchi-
cal mesh deformation-based generative strategy as a gen-
eral few-shot generation method not restricted to articu-
lated objects, we test it on four rigid categories from the
ShapeNet dataset [1] (i.e., Table, Chair, Lamp, and Air-
plane) and compare it to the baselines. Categories for pre-
training convex-level deformation models of Table, Chair,
Lamp, and Airplane are Chair, Table, Airplane, and Lamp
respectively. From Table 4, our method can still achieve
better performance on all of those four categories. It further
demonstrates the superiority of our hierarchical mesh de-
formation strategy as a general few-shot generation method
over previous methods. We also report the results achieved
by our method on the other two few-shot learning settings.
We can make similar observations by comparing across dif-
ferent few-shot learning settings. As a qualitative evalua-
tion, we draw samples from our model for the above four
categories in Figure 2 (under the 4-shot setting).

Deformation results on human bodies Ours approach can
indeed generalize to complex shape such as human bodies
as exampled in Figure 3. We mainly leverage this exam-
ple to show the method is not restricted to relatively sim-
ple piece-wise rigid objects demonstrated in main experi-
ments. However, we do not conduct abundant experiments
on it since human bodies are deformable and have rich data
sources, which diverge from our focus on piece-wise rigid
objects with limited examples.

B.2. Transfer Learning and Fine-tuning for Convex
Deformations

We examine the role of transfer learning and fine-tuning
in our method and find that 1) Transfer learning’s power
can be boosted by increasing the amount of source data and
is affected by the affinity between source and target cate-
gories; 2) Fine-tuning can help learn category-specific de-
formation patterns, benefiting quality and diversity.

Transfer learning w.r.t. amount of data for transferring.
Table 6 compares the model’s performance when a) using
all source data for transferring, b) using half amount of to-
tal source data, and c) use no transfer learning. The trans-
fer learning’s effectiveness can be boosted increasing the
amount of source data for transferring.

Transfer learning w.r.t. source categories. To test the in-
fluence of source categories for deformation pattern trans-
ferring on the few-shot generation performance, we try to
vary the source categories by using each category individu-
ally as the source and comparing them. We conduct exper-
iments on three relatively rich articulated mesh categories,

Figure 1. The effectiveness of the mesh smooth layer. For every three shapes, the leftmost one is the reference shape for deformation, the middle one is
the generated mesh without smoothing, and the right one is the shape after smoothing.

Table 1. Experimental comparisons on Eyeglasses category. MMD is multiplied by 103. Bold numbers for best values.

#Shots Method MMD (↓) COV (%, ↑) 1-NNA (%, ↓) JSD (↓)

2
PolyGen [8] 9.558 3.18 99.70 0.1543

DeepMetaHandles [6] 8.684 6.67 99.21 0.1585
Ours 7.279 19.30 98.41 0.0903

4
PolyGen [8] 8.669 8.28 98.42 0.1425

DeepMetaHandles [6] 6.685 12.57 98.50 0.1036
Ours 6.303 27.54 98.80 0.0840

8
PolyGen [8] 7.663 15.56 97.24 0.1054

DeepMetaHandles [6] 6.222 17.33 97.99 0.0864
Ours 6.102 34.56 97.25 0.0799

namely Eyeglasses, Scissors, and TrashCan. From Table 5,
we can make the following observations: 1) For Scissors,
Lamp is a friendly category to reduce the minimum match-
ing distance for samples of higher quality. 2) For TrashCan,
Lamp as the source category can help with enhancing the
diversity of generated samples, perhaps due to diverse de-
formation patterns transferred to the TrashCan’s body parts.

Fine-tuning. The effectiveness of the fine-tuning process
can be examined by comparing the ablated version and the
full model demonstrated in Table 6.

Intermediates for transferring deformation patterns.
We choose to use convexes as intermediates to learn and
transfer shared deformation patterns in this work. It comes
from the assumption and the observation that the convex
distribution is more similar across different categories than
the whole shape distribution (as shown in Figure 4). There-
fore, from our intuition, convexes are more promising to
serve as intermediates for transferring mesh deformation
patterns across different categories. We further validate this
intuition by trying to learn and transfer deformation patterns
at the object level. As shown in Table 7, our model using
convexes as intermediates can perform much better than the
trail on transferring at the object level. This validates one of
our crucial assumptions in this work.

Besides, we cannot even observe trivially transferring
deformation patterns at the object level as a better strategy

than the method without any deformation transferring. Usu-
ally, transferring deformation rules for the whole object re-
quires some special designs [10]. This confirms the value
of our hierarchical deformation design for mesh deforma-
tion transferring.

Shape retrieval experiments for comparing quality and
diversity. As a further intuitive demonstration on the ef-
fectiveness of our techniques (i.e., transfer learning, fine-
tuning, and convex as intermediates) on improving the re-
sults’ diversity and quality transfer learning, we conduct a
shape retrieval experiment and compare our model with dif-
ferent ablated versions. Given each target shape, we select
the its closest shape from generated assets as the retrieval
results. The results are presented in Figure 5. Only ours can
give results that are plausible, closet to the target, while also
different from each other.

B.3. Generation via Deformation

There are a variety of generation techniques that have
been developed recently in the tide of AIGC, such as score-
based generative models and diffusion models. Along with
them, many works try to explore the possibility of leverag-
ing such techniques for 3D content generation. They mostly
aim at generating shapes as a whole without considering
their functionalities.

In this work, we wish to generate physically-realistic ar-

Table 2. Experimental comparisons on Scissors category. MMD is multiplied by 103. Bold numbers for best values.

#Shots Method MMD (↓) COV (%, ↑) 1-NNA (%, ↓) JSD (↓)

2
PolyGen [8] 7.311 4.55 99.65 0.5192

DeepMetaHandles [6] 6.154 12.19 98.39 0.3315
Ours 2.503 26.19 98.31 0.1412

4
PolyGen [8] 4.015 9.52 98.96 0.3459

DeepMetaHandles [6] 1.875 24.20 98.76 0.2173
Ours 1.534 50.45 97.81 0.1299

8
PolyGen [8] 3.108 13.16 97.91 0.2067

DeepMetaHandles [6] 1.747 32.19 96.76 0.2017
Ours 1.184 63.47 96.12 0.1256

Table 3. Experimental comparisons on TrashCan category. MMD is multiplied by 103. Bold numbers for best values.

#Shots Method MMD (↓) COV (%, ↑) 1-NNA (%, ↓) JSD (↓)

2
PolyGen [8] 16.448 4.29 97.44 0.3224

DeepMetaHandles [6] 14.589 6.33 90.24 0.2170
Ours 12.746 9.00 84.81 0.1436

4
PolyGen [8] 10.218 13.22 93.09 0.2331

DeepMetaHandles [6] 9.402 17.14 86.49 0.1913
Ours 8.499 17.14 73.11 0.1003

8
PolyGen [8] 9.001 16.67 90.79 0.1938

DeepMetaHandles [6] 8.970 22.83 84.44 0.1379
Ours 8.134 24.47 71.02 0.0935

ticulated meshes and resort to a relatively traditional gener-
ation technique, i.e., generation via deformation. The rea-
sons of our choice are mainly as follows: 1) Deformation-
based generation could let us parameterize shape variations
into a low-dimensional space, by leveraging cages to con-
trol deformations and by using deformation bases to record
common deformation patterns. 2) Deformation-based gen-
eration could easily let us find suitable intermediates such
that shared deformation patterns can be transferred across
different categories easily. 3) It also enables us to devise
an effective physics-aware correction scheme to guide the
model to generate physically-realistic deformations.

To explore more possibilities, we try to design another
method that leverages point cloud diffusion, surface recon-
struction, and a physics-aware correction designed for the
reverse diffusion process, supported by the differentiable
surface reconstruction algorithm. However, sometimes we
observe that it tends to produce meshes of poor quality.
We suppose that it comes from the difficulty to impose
physics-related constraints on the generated meshes from
point cloud diffusion.

We would elaborate on details of this method and its re-
sults in the following text.

Method: Hierarchical generation via point cloud dif-
fusion. It proceeds as follows: 1) Represent the shape
via an object-convex hierarchy via convex decomposition.

2) Train a convex-level conditional point cloud diffusion
model on source categories. 3) Transfer the pre-trained
convex-level point cloud diffusion model to the target cat-
egory via fine-tuning. 4) Compose convex point clouds
for object point clouds. 5) Reconstruct the mesh surface
for part-level point clouds via a pre-trained differential poi-
son solver model (an SAP model) [9] which is further fine-
tuned on the target category. 6) Compose parts together for
the final articulated mesh with a physics-aware correction
scheme.

Existing problems. Despite the flexible generation abil-
ity and high diversity of the sampled shapes, this strategy
suffers from the poor articulated mesh quality when we fur-
ther add a physics-aware correction scheme on top of recon-
structed part surfaces, as shown in Figure 6.

Discussions. Generating physically-realistic articulated
meshes are usually challenged by the few-shot difficulty,
mesh quality, and the physically-realistic expectations. We
explore a mesh deformation-based physics-aware genera-
tion strategy in this work by transferring deformation pat-
terns from large categories and further with a physics-aware
correction scheme that can improve the physical validity of
generated samples while at the same time preserving trans-
ferred knowledge.

As for two key designs in our work, transferring cross-

Figure 2. Qualitative evaluation on few-shot rigid mesh generation. For every four shapes, the leftmost one (highlighted by blue rectangles) is the
reference shape from the training set, while the remaining three are conditionally generated samples. Object categories from top to down are Table, Lamp,
Chair, and Airplane.

Source
Shape

Source
Cages

Deformed
Cages

Deformed
Shape

Figure 3. Additional deformation results on human bodies.

Object Convex

Figure 4. Domain gap measured by different levels of shapes.
Heatmaps of minimum matching distances between pre-training and tar-
get datasets.
category shared shape patterns at the convex level is a rel-
atively general idea that can also be adapted to other gen-

Table 4. Experimental comparisons on rigid mesh categories. MMD is multiplied by 103. Bold numbers for best values.

Category #Shots Method MMD (↓) COV (%, ↑) 1-NNA (%, ↓) JSD (↓)

Table

2 Ours 6.162 8.20 98.87 0.1118
4 Ours 4.206 13.63 97.80 0.0763

8 DeepMetaHandles [6] 6.640 7.45 99.34 0.1046
Ours 2.356 25.23 96.33 0.0479

Chair

2 Ours 4.148 15.20 99.42 0.1080
4 Ours 3.363 19.36 98.63 0.0512

8 DeepMetaHandles [6] 5.205 12.70 99.43 0.0738
Ours 2.690 28.43 97.09 0.0294

Lamp

2 Ours 4.029 16.80 97.17 0.0930
4 Ours 3.556 20.70 96.13 0.0749

8 DeepMetaHandles [6] 9.730 11.40 99.75 0.1966
Ours 2.822 30.20 93.67 0.0671

Airplane

2 Ours 1.029 15.93 97.47 0.0906
4 Ours 0.927 21.15 97.33 0.0401

8 DeepMetaHandles [6] 2.295 9.37 99.31 0.1654
Ours 0.869 25.71 97.08 0.0334

Table 5. Few-shot generation performance w.r.t. source categories for transfer learning on Eyeglasses, Scissors, and TrashCan categories. “All”
denotes using all of those four categories as the source category.

Target
Category

Source
Category MMD (↓) COV (%, ↑) 1-NNA (%, ↓) JSD (↓)

Eyeglasses

Table 6.07 25.00 99.13 0.0875
Chair 8.23 20.53 99.57 0.1188
Lamp 6.47 26.67 98.46 0.0973

Airplane 8.28 21.91 99.35 0.1042
All 6.06 29.82 98.26 0.0681

Scissors

Table 1.63 51.07 97.55 0.1579
Chair 1.57 56.76 97.10 0.1752
Lamp 1.34 54.39 97.79 0.1328

Airplane 1.67 52.19 97.36 0.1724
All 1.50 57.89 97.02 0.1274

TrashCan

Table 8.43 17.07 72.87 0.0933
Chair 8.39 17.07 74.29 0.0939
Lamp 9.49 19.29 73.58 0.1138

Airplane 13.20 10.32 74.29 0.1429
All 8.43 17.14 72.09 0.0994

eration techniques for shape space enrichment. However,
further imposing physical validity on top of the generated
samples is not a trivial thing. Our physics-aware correction
works well for the deformation-based generation. But what
is the most ideal strategy that can be combined with other
generation techniques naturally worth further exploring.

C. Experimental Settings

C.1. Datasets

Rigid mesh datasets for pre-training. For pre-training
data from rigid object categories, we select 9947 instances
from ShapeNet [1] dataset, including Table, Chair, Lamp,
and Airplane. We list the number of instances in each cate-
gory in Table 9.

Articulated mesh datasets for evaluation. For articu-
lated object datasets, we select six articulated object cat-

Table 6. Ablations w.r.t. the effectiveness of pre-training and fine-tuning.

Method MMD (↓) COV (%, ↑) 1-NNA (%, ↓) JSD (↓) APD (↓)
Ours w/o Transfer 5.424 46.64 93.01 0.1159 1.3822

Ours w/ Transfer (Half Data) 5.201 49.43 92.81 0.1130 1.3365

Ours w/o Fine-tuning 6.538 43.20 94.70 0.1437 1.4530

Ours 5.198 50.45 92.36 0.1118 1.3192

Table 7. Comparison between methods using the transfer learning strategy at the object level and the convex level. For metrics of each version, we
report their average value over all categories. MMD is multiplied by 103 and APD is multiplied by 102. Bold numbers for best values.

Method MMD (↓) COV (%, ↑) 1-NNA (%, ↓) JSD (↓)
Ours (Transfer Obj.) 7.339 32.70 96.11 0.1557

Ours w/o Hier. 7.170 36.41 95.43 0.1492
Ours 5.198 50.45 92.36 0.1118

Ours

w/o Transfer

w/o Fine-tuning

Part as Intermediates

Baseline

Target Shapes

Shape Retrieval for Comparing Quality and Diversity

Figure 5. Shape retrieval for comparing quality and diversity.

egories from [11] and four rigid object categories from
ShapeNet [1]. We list the number of its instances in Table 8.

C.2. Baselines.

We compare our method with two typical mesh genera-
tive strategies, namely PolyGen [8] that falls into the genre
of direct surface generation strategies, and DeepMetaHan-
dles [6] that leverages mesh deformation for generation. To
further adapt them to our articulated mesh generation sce-
nario, we make further modifications to their original algo-
rithms. We briefly summarize our implementations of such
two methods as follows.

For PolyGen [8], we download the official TensorFlow
implementation. We then design a part-by-part genera-
tion strategy to leverage it for articulated mesh genera-
tion. We define a part order (P1, ...,Pk), where k is the
number of parts, and generate joints of each part via gen-
erating two joint points (if any, otherwise generating no
points, equivalent to generating an empty joint point set),
i.e., Ji(1 ≤ i ≤ k). Therefore, we generate mesh ver-
tices, mesh surfaces, and joint points via the following or-
der: [(V1,F1,J1), ..., (Vk,Fk,Jk)].

For DeepMetaHandles [6], we use the official implemen-
tation. To leverage it for articulated mesh generation, we
train a deformation-based generative model for each part
individually. Then, an object is generated by generating its
part. Directly using the above strategy yields the default
version of our compared DeepMetaHandles (“DeepMeta-
Handles”). We could further add a physics-aware deforma-
tion correction scheme on top of it, leading to the improved
version (denoted as “DeepMetaHandles w/ Phy.”).

C.3. Metrics.

For generative model-related metrics, we follow the
computing processes adopted in [7] and evaluate corre-
sponding values on 4096 points sampled from mesh sur-
faces. Average Penetration Depth evaluates the average per-
vertex penetration depth further averaged over all articula-
tion states. Its computing process is the same as that ofLphy

(see Algorithms 3 4 for details).

C.4. Additional Implementation Details

Convex decomposition. We use BSP-Net [2] to provide
intra-category consistent shape co-segmentation for each
category. It’s worth further mentioning that the number of
convexes that we set for BSP-Net performs only as the up-
per bound of the number it uses for decomposition. For
rigid categories, we set the number of convexes to 256. For
articulated objects, we list their settings in Table 10. For
each part, we first try the 128 convexes setting and double
the number of convexes by 2 if BSP-Net’s training loss can-
not converge.

For a visual understanding of the convex decomposition,
we draw some examples of decomposed convexes of in-
stances from the Table category in Figure 7.

Convex-level generative model. For the convex-level gen-
erative model, we use a sphere mesh containing 42 vertices

Figure 6. Examples of articulated meshes generated by the point cloud diffusion-based strategy (Category: Eyeglasses).

Figure 7. Examples for decomposed convexes (converted to point clouds) of instances for the Table category. Different colors represent different
convexes.

and 80 faces [12] as the template of cages. The number of
deformation bases is set to 16.

We use a neural network ψθ(·) to parameterize defor-
mation bases. It takes a convex c as input and predicts its
deformation bases Bc = ψθ(c). It first extracts the convex
feature for c via a PointNet encoder (applied on 4096 points
sampled from c’s surface). Then we feed the convex feature
and the cage tc of the convex c to a MultiFold network, same
as the network used in [12] for per-point features with the
bottleneck size set to 512 and the number of folds set to 3.
We then use an MLP for basis prediction with weight size in
each layer set to (128, 128), (128, 128), and (128, 48) with
LeakyReLU layer using the default α value between every
two fully-connected layers.

Training protocols. In the pre-training stage, total losses
for optimizing the convex-level deformation-based genera-
tive model is composed of the convex deformation loss LC

and two penalty terms, i.e., Lsp and Lorth. Specifically, the
total loss is L = LC + λsp · Lsp + λorth · Lorth, where λsp
and λorth are both set to 10−4 in our implementation.

In the fine-tuning stage, the object-level physical penalty
Lphy (calculated on the final shape optimized via Lproj)
is further added to encourage the network to produce
physically-realistic deformations. Therefore, the total loss
becomes L = LC +λphy · Lphy +λsp · Lsp+λorth · Lorth.
We empirically set λphy to 1.0.

We use the Adam optimizer with the momentum set to
(0.9, 0.999) for optimization in both the pre-training and the
fine-tuning stages. The initial learning rate is set to 10−4.
And it decayed by 0.5 after every 100 epochs.

Evaluation protocols. We adopt the few-shot generation
evaluation strategy. The default number of shots is set to
5. We use the same test set to compare different meth-

ods. Specifically, for each articulated mesh category, we
randomly select 5 instances for training while using the re-
maining instances for test. At the test time, such 5 instances
serve as reference examples to generate new samples. For
each reference example, we generate 40 samples from it.
It is realized by passing the example mesh into the hier-
archical deformation generative model and randomly sam-
pling 40 global deformation coefficients z from its defor-
mation coefficient distribution model. Each global defor-
mation coefficient z together with the synchronized defor-
mation bases {ScBc} are used to deform the example to a
new shape.

As for the 2-shot, 4-shot, and 8-shot settings present in
the supplementary material, we use the same strategy to
split instances in the articulated mesh category into a few-
shot training set and a test set.

Table 8. Number of instances in each articulated object category.

Method
Storage

Furniture Scissors Eyeglasses Oven Lamp TrashCan

#Instances 31 46 65 10 13 43

Table 9. The number of instances in each rigid object category.

Method Table Chair Lamp Airplane
#Instances 3000 2447 1500 3000

Table 10. The number of convexes used for convex decomposition for each kind of part of each articulated object category.

Method
Storage

Furniture Scissors Eyeglasses Oven Lamp TrashCan

Link 0 128 128 128 128 128 128
Link 1 512 128 128 512 128 512
Link 2 512 - 128 - 128 -
Link 3 - - - - 128 -

References

[1] Angel X Chang, Thomas Funkhouser, Leonidas Guibas,
Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,
Manolis Savva, Shuran Song, Hao Su, et al. Shapenet:
An information-rich 3d model repository. arXiv preprint
arXiv:1512.03012, 2015. 4, 8, 9

[2] Zhiqin Chen, Andrea Tagliasacchi, and Hao Zhang. Bsp-net:
Generating compact meshes via binary space partitioning. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 45–54, 2020. 9

[3] Francisco González Garcı́a, Teresa Paradinas, Narcis Coll,
and Gustavo Patow. * cages: a multilevel, multi-cage-based
system for mesh deformation. ACM Transactions on Graph-
ics (TOG), 32(3):1–13, 2013. 4

[4] Zheng Gu, Wenbin Li, Jing Huo, Lei Wang, and Yang Gao.
Lofgan: Fusing local representations for few-shot image
generation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 8463–8471, 2021. 4

[5] Yan Hong, Li Niu, Jianfu Zhang, and Liqing Zhang. Delt-
agan: Towards diverse few-shot image generation with
sample-specific delta. In European Conference on Computer
Vision, pages 259–276. Springer, 2022. 4

[6] Minghua Liu, Minhyuk Sung, Radomir Mech, and Hao Su.
Deepmetahandles: Learning deformation meta-handles of
3d meshes with biharmonic coordinates. arXiv preprint
arXiv:2102.09105, 2021. 2, 5, 6, 8, 9

[7] Shitong Luo and Wei Hu. Diffusion probabilistic models for
3d point cloud generation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 2837–2845, 2021. 9

[8] Charlie Nash, Yaroslav Ganin, SM Ali Eslami, and Peter
Battaglia. Polygen: An autoregressive generative model of
3d meshes. In International conference on machine learning,
pages 7220–7229. PMLR, 2020. 5, 6, 9

[9] Songyou Peng, Chiyu Jiang, Yiyi Liao, Michael Niemeyer,
Marc Pollefeys, and Andreas Geiger. Shape as points: A dif-
ferentiable poisson solver. Advances in Neural Information
Processing Systems, 34:13032–13044, 2021. 6

[10] Minhyuk Sung, Zhenyu Jiang, Panos Achlioptas, Niloy J Mi-
tra, and Leonidas J Guibas. Deformsyncnet: Deformation
transfer via synchronized shape deformation spaces. arXiv
preprint arXiv:2009.01456, 2020. 5

[11] Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao
Zhu, Fangchen Liu, Minghua Liu, Hanxiao Jiang, Yifu Yuan,
He Wang, et al. Sapien: A simulated part-based interactive

environment. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 11097–
11107, 2020. 9

[12] Wang Yifan, Noam Aigerman, Vladimir G Kim, Siddhartha
Chaudhuri, and Olga Sorkine-Hornung. Neural cages for
detail-preserving 3d deformations. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 75–83, 2020. 10

