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Abstract

We study the problem of few-shot physically-aware artic-
ulated mesh generation. By observing an articulated object
dataset containing only a few examples, we wish to learn
a model that can generate diverse meshes with high vi-
sual fidelity and physical validity. Previous mesh generative
models either have difficulties in depicting a diverse data
space from only a few examples or fail to ensure physical
validity of their samples. Regarding the above challenges,
we propose two key innovations, including 1) a hierarchi-
cal mesh deformation-based generative model based upon
the divide-and-conquer philosophy to alleviate the few-shot
challenge by borrowing transferrable deformation patterns
from large scale rigid meshes and 2) a physics-aware de-
formation correction scheme to encourage physically plau-
sible generations. We conduct extensive experiments on
6 articulated categories to demonstrate the superiority of
our method in generating articulated meshes with better
diversity, higher visual fidelity, and better physical valid-
ity over previous methods in the few-shot setting. Further,
we validate solid contributions of our two innovations in
the ablation study. Project page with code is available at
meowuu7.github.io/few-arti-obj-gen.

1. Introduction

Generative models have aroused a wide spectrum of in-
terests in recent years for their creativity and broad down-
stream application scenarios [29, 30, 34, 17, 8, 26]. Spe-
cific to 3D generation, a variety of techniques such as de-
noising diffusion [23, 42, 6, 39] have also been discussed
for a while. Among them, mesh generation is indeed im-
portant since the mesh representation can support a wider
range of downstream applications such as rendering and
physical simulation compared to other representations such
as point clouds. Existing works mainly focus on generat-
ing meshes for whole objects [8, 26, 6, 19, 30] considering
without modeling object functionalities at all. Besides, they
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Figure 1. Overview. We present a hierarchical mesh deformation-
based generative model to solve the challenging yet important few-shot
physically-aware articulated mesh generation problem. It tackles the few-
shot challenge by borrowing shared convex level deformation patterns
from large-scale rigid meshes and incorporates a deformation correction
scheme to further enhance the model’s ability to generate physically real-
istic meshes.

mainly rely on reconstructing meshes from other kinds of
representations such as implicit fields [8, 6, 19] instead of
generating meshes directly. In this work, we go one step
further and consider mesh generation for articulated objects
that can support physically realistic articulations. This not
only helps understand the object distribution in real-world
assets, but also allows an intelligent agent to learn segment-
ing [20, 22], tracking [36], reasoning [10] and manipulat-
ing [38] articulated objects through a simulation environ-
ment. We focus on the articulated mesh generative model
that can generate object meshes with diverse geometry, high
visual fidelity, and correct physics.

Training a generative model on publicly available articu-
lated mesh datasets to depict a diverse physically-plausible
data space not limited to training assets presents two main
challenges to the methodology. First, existing articulated
object datasets are usually very restricted in scale. For ex-
ample, the PartNet-Mobility Dataset [37] contains an av-
erage of 51 meshes per category. This naturally requires
a few-shot generative model to learn from a very limited
number of meshes. Adapting previous approaches imme-
diately without carefully considering the few-shot nature
would lead to models suffering from poor generative abil-
ity. Second, we need to pursue physically plausible gen-
eration to ensure the generated meshes are not only visu-
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ally appealing but also functionally sound to support correc-
tion articulation functions, i.e., attached parts without self-
penetrations in the full articulation range.

Despite recent advancements in mesh generation com-
munity such as a wide variety of models proposed in exist-
ing works [8, 41, 6, 33, 19], they are typically challenged by
the following difficulties and always fail to solve our prob-
lem: 1) Lack of the ability to learn a wide data space not
limited to training shapes in the few-shot setting. 2) Dif-
ficulty in modeling crucial object-level shape constraints
imposed by the functionality of articulated objects. Fail-
ure to consider these requirements would result in physi-
cally unrealistic samples [8, 6, 26]. Modeling such physi-
cal constraints for articulated meshes is a non-trivial task,
as it requires accounting for diverse penetration phenomena
caused by different types of articulation motions. To our
best knowledge, we are the first that presents a valid frame-
work to address such two difficulties for articulated mesh
generation.

Our work designs a hierarchical mesh deformation-based
generative model that tackles the aforementioned chal-
lenges using two key innovations: (1) Hierarchical mesh
deformation with transfer learning. We introduce an object-
convex shape hierarchy and learn the hierarchical articu-
lated mesh generative model. The model is trained by
first learning the deformation-based generative model at the
leaf convex level and then synchronizing individual convex-
level deformation spaces at the root level. We identify that
different categories tend to share convex-level deformation
patterns and leverage this insight to learn and transfer rich
deformation prior from large-scale rigid datasets to expand
the model’s generative capacity. (2) Physics-aware defor-
mation correction. To address self-penetrations of deformed
articulated meshes during mesh articulation, we further in-
troduce a deformation correction scheme. It is composed of
an auxiliary loss penalizing self-penetrations during mesh
articulation and a collision response-based shape optimiza-
tion strategy. By integrating this scheme into the hierar-
chical mesh deformation model, we successfully guide the
model to generate more physically realistic deformations,
resulting in physically correct articulated meshes finally.

We conduct extensive experiments on 6 categories from
the PartNet-Mobility dataset [37] for evaluation. As demon-
strated by both the quantitative and qualitative results, we
can consistently outperform all baseline methods regarding
the fidelity, diversity and physical plausibility of generated
meshes, e.g., an average of 10.4% higher coverage ratio,
43.7% lower minimum matching distance score, and 26.5%
lower collision score. Ablation studies further validate the
value of our design in deformation pattern transfer learn-
ing, the hierarchical mesh generation approach, and the ef-
fectiveness as well as the versatility of our physics-aware
correction scheme.

Our key contributions are as follows: (1) We present
the first solution, to our best knowledge, for the challenging
yet important few-shot physically-aware articulated mesh
generation problem with two effective and non-trivial tech-
nical innovations. (2) We propose a hierarchical mesh
deformation-based generative model based upon the divide-
and-conquer philosophy. This design allows us to learn a
diverse data space by borrowing shared deformation pat-
terns from large-scale rigid object datasets. (3) We propose
a physics-aware deformation correction scheme to encour-
age the hierarchical generative model to produce physically
realistic deformations, resulting in improved physical valid-
ity of the generated samples. This scheme can also be effec-
tively integrated into other deformation-based mesh genera-
tive models, thereby enhancing the physical validity of their
samples as well.

2. Related Works

Mesh generative models. There have been vast and long
efforts in devising 3D mesh generative models [26, 8, 41,
6, 21, 35]. Their techniques can be mainly categorized
into three genres: 1) direct surface generation [26], 2)
deformation-based mesh generation [21, 35], and 3) hybrid
representation-based generation [8, 41]. Though methods
of the first type exhibit obvious merits such as synthesiz-
ing high-quality n-gon meshes, they always suffer from lim-
ited generative ability and cannot scale for complex objects.
In contrast, deformation-style mesh generation models de-
form source shapes for new samples which naturally spares
the efforts for mesh structure generation, while restricted
by poor flexibility. The third strategy separates the mesh
surface structure generation problem from the content gen-
eration, which offers them with powerful generative ability.
However, the quality of their samples is coupled with the
power of their surface reconstruction techniques [27, 31]. In
this work, we leverage mesh deformation as our generation
technique for articulated mesh synthesis, taking advantages
of its ability to produce high-quality samples. Instead of
deforming whole objects or parts directly, we design a hi-
erarchical deformation strategy to enhance the deformation
flexibility and to enrich the data space by borrowing defor-
mation patterns shared across categories from large scale
rigid meshes.

Few-shot generation. Along with the flourishing image
generative models emerged in recent years, the few-shot im-
age generation has been widely explored as well [12, 9, 11,
13, 2]. It wishes to create more data given only a few ex-
amples from a novel category that is both diverse in content
and semantically consistent with the target category. At the
high level, their basic philosophy is to design proper ap-
proaches such that the model can benefit from large base
datasets for generation, like local fusion [9], latent vari-



ables matching [11, 3]. adversarial delta matching [12].
In this work, we leverage transfer learning to adapt shape
patterns from large-scale rigid datasets to target articulated
categories. Devising methods in this way requires us to �nd
correct intermediates on which shape patterns are cross-
category transferrable. Instead of directly using whole ob-
jects or articulated parts, we choose convexes as such in-
termediates. Transferring knowledge at this level presents
further dif�culties in fusing them together in a geometri-
cally consistent way and in synthesizing physically realistic
meshes while mainting visual diversity at the same time.

Physics-aware machine learning. Our work is also re-
lated to physics-aware machine learning [28, 10, 14, 24,
32, 25, 18], and mostly relevant to physically-aware gen-
erative models. To ensure physical validity of generated
shapes, typical solutions choose either of�ine simulations
for training data �ltering [32] or online simulations leverag-
ing the development of differentiable simulators [7, 15, 16]
or by designing online simulation layers [24]. Generating
physically-plausible articulated objects presents new chal-
lenges considering self-penetrations during mesh articula-
tion that are more complex than stability issues caused by
gravity for rigid objects. Our method integrates the physi-
cal supervision and a shape optimization strategy. The opti-
mization transforms part shapes to resolve self-penetration
issues. High-dimensional and complex shape deformations
are involved in the process, different from linear �xing op-
erations considered in [10].

3. Method

The problem we are targeting is the few-shot physically-
aware articulated mesh generation. Given a set of articu-
lated meshes from the category of interest, we would like
to learn a conditional generative model which could deform
an articulated mesh from the same category into a wide va-
riety of shapes. This conditional generation setup allows
generating a large number of physically-plausible articu-
lated meshes from a few examples while avoiding the need
to generate the mesh structure. However, it leaves several
challenges to address including how to accurately repre-
sent complex shape deformation spaces from a few exam-
ples and how to ensure that the generated meshes support
physically-realistic articulations.

Regarding the �rst challenge, our idea is to learn the de-
formation space via borrowing knowledge from other object
categories. This seemingly simple idea is not trivial to re-
alize though since we need to �gure out what knowledge
is transferrable. We present a hierarchical mesh deforma-
tion strategy to allow deformation prior to transfer at a local
convex segment level while still maintaining the deforma-
tion consistency at the global shape level. Regarding the
second challenge, we introduce a physics-aware deforma-

tion correction scheme to avoid unwanted artifacts such as
self-penetrations during mesh articulation.

In the following, we will provide a pipeline overview in
Section 3.1. Then we will explain our hierarchical mesh de-
formation strategy and our physics-aware deformation cor-
rection scheme in Section 3.2 and Section 3.3 respectively.

3.1. Overview

Given a small set of articulated meshesA from a cer-
tain category of interest with the same number of parts and
joints, sharing a known kinematic chain, our method wishes
to learn a conditional generative model depicting a diverse
and plausible articulated shape space. We adopt the divide-
and-conquer philosophy and develop a hierarchical defor-
mation scheme with transfer learning to tackle the dif�culty
of few-shot generation. Instead of learning at the whole
shape level, we structure each articulated shape into an
object-convex hierarchy and solve the generation problem
via two steps. We �rst learn a generative model depicting
a diverse shape space at the lowest convex level by borrow-
ing common shape patterns from large rigid mesh datasets,
denoted asB. Convexes, with small cross-category distribu-
tion gap, serve as good intermediates for transferring com-
mon shape prior. After that, we devise a synchronization
strategy that composes convex deformations consistently to
form valid object shapes. Besides, a physics-aware correc-
tion scheme is developed to avoid physically-unnatural phe-
nomena such as self-penetrations. Our overall pipeline is
shown in Figure 2.

Speci�cally, we �rst decompose the conditional mesha
into approximately convex segmentsCa , forming an object-
convex hierarchy. Then, on the leaf level, we learn to de-
form each convexc 2 Ca through a convex-level condi-
tional generative modelgC(zcjc) wherezc is the noise pa-
rameter corresponding to convexc. Finally, on the root
level, we synchronize the convex deformations by replac-
ing the convex-dependent noise parameterzc with Scz,
whereSc is a linear transformation andz is a synchronized
noise parameter shared among all convexes. This aligns
the noise space of different convexes to form a coherent
deformation for the whole mesh. The above hierarchical
deformation strategy can be mathematically represented as
g(zja) = f gC(Sczjc)jc 2 Cag.

During the training time, we �rst leverage existing unsu-
pervised shape segmentation tools BSP-Net [5] to decom-
pose meshes in bothA and B into approximately convex
segmentsCA andCB . Since BSP-Net decomposes shapes
consistently for each category, we can naturally identify
corresponding convexes withinCA or CB . We can then pre-
train a convex-level conditional generative modelgC(zcjc)
onCB modeling how corresponding convexes could deform
into each other among the large-scale rigid meshes. We
then �ne-tune the pre-trained modelgC(zcjc) on convexes



Figure 2. Framework overview for our few-shot physically-aware articulated mesh generation.In this �gure, yellow blocks represent modules
with learnable weights optimized during pre-training. Orange blocks contain weights optimized during �ne-tuning. Gray blocks contain no learnable
weights. Convexes of the same color are of the same type. Our framework consists of a hierarchical mesh deformation scheme that learns and transfers
diverse shared deformation patterns from large-scale rigid datasets at the convex level. We also propose a convex deformation synchronization strategy to
combine individual convex-level deformation spaces into the object-level space. Furthermore, we introduce a physics-aware deformation correction strategy
to address self-penetrations in synthesized articulated meshes.

in CA and at the same time estimate the noise synchroniza-
tion transformationSc. We further exploit an additional
physics-aware deformation correction scheme to improve
the physical validity of generated articulated shapes. It con-
sists of 1) an auxiliary loss penalizing self-penetrations to
provide physical supervision and 2) a collision response-
based shape optimization strategy to encourage the model
to generate physically realistic meshes. The auxiliary loss
is incorporated into the training pipeline. While the shape
optimization scheme functions at both the training time and
the test time.

3.2. Hierarchical Mesh Deformation

Given an input articulated mesha and its corresponding
approximately convex segmentsCa , our hierarchical mesh
deformation modelg(zja) = f gC(Sczjc)jc 2 Cag con-
sists of a convex-level conditional generative modelgC as
well as a series of synchronization transformationsf Scg.
We propose to learn the model at the lowest convex level
gC following a transfer learning paradigm so that convex-
level shape patterns can easily transfer across different cat-
egories. Given a reference mesha, the hierarchical defor-
mation �rst synthesizes new convex shapes viagC . A de-
formation synchronization strategy is developed to handle
the resulting deformation inconsistency issue across differ-
ent convexes to form a valid object shape.

Convex-level conditional generative model.We propose
to leverage mesh deformation to characterize the convex-
level conditional generative model. For a convex mesh seg-
ment c containingNc vertices, the conditional generative
modelgC(zcjc) should be able to produce diverse and real-
istic vertex-level deformation offsetdc 2 RN c � 3 when we
sample different noise parameterszc.

The convex deformationdc lies in a high-dimensional
space which varies from convex to convex, prohibiting the
knowledge transfer across different convexes. We therefore
reparametrizedc using two tricks inspired by [40, 21]: 1)
using cages to control per-vertex deformation; 2) using dic-

tionaries to record the common deformation modes.
In particular, for each convexc, we use a coarse trian-

gle mesh (a cage)tc enclosingc to control the deformation
of convexc [40]. The cagetc usually contains much less
vertices compared with the convexc so that its distribution
is easier to be modeled. The deformationdc of the convex
c can be easily computed as a linear transformation of the
deformationd t c of cagetc: dc = � cd t c . Here� c is an
interpolation matrix based upon the generalized barycentric
coordinates of convexc with respect to cagetc. We deform
a template mesh based upon the shape of each convex to
form the cages which we defer the details to supp.

To further reduce the deformation parametrization, we
represent the cage deformationd t c as a linear combination
of K deformation basesBc = [ b1

c ::: bK
c ] asd t c = Bczc,

wherezc is aK -dimensional deformation coef�cient. Here
each deformation basisbc represents a common deforma-
tion pattern and all the bases span the deformation space
of cagetc and therefore convexc. Representing deforma-
tion spaces via deformation bases can effectively reduce the
dimension of shape space compared to other alternatively
such as utilizing latent vectors.

A few-shot deformation learning paradigm. Given the
above deformation reparametrizations, learning the convex-
level conditional generative model for each convexc boils
down to learning the deformation basesBc as well as the
distribution of deformation coef�cientzc. For deformation
bases, we employ a neural network � (�) to predict from
convex shapes. It takes a given convexc as input and out-
puts its deformation bases,i.e., Bc =  � (c). We then op-
timize the deformation coef�cientzĉ

c for each convex̂c in
correspondence toc from the current available dataset. The
distribution ofzc is then a mixture of Gaussian �t by the re-
sulting deformation coef�cientsf zĉ

cg. We further leverage
a transfer learning approach that transfers deformation pri-
ors learned in large-scale rigid dataset to target datasets at
the convex level based on the observation that the convex-
level deformations usually show similar patterns across cat-



egories,e.g.,a slab gets thicker or a strip gets enlongated.
Therefore we can learn a diverse deformation space from a
few examples.

We pre-train gC(zcjc) on the large-scale rigid mesh
datasetB and �ne-tune it on each target articulated dataset
A . In particular, at the pre-training time, given a set of
rigid meshesB from large-scale online repositories as well
as the corresponding convexesCB , we �rst identify pairs
of convexes in correspondencef (c; ĉ)jc; ĉ 2 CB g from the
same-category shapes,e.g., the noses of two different air-
planes. These correspondences come as a result of some
off-the-shelf unsupervised co-segmentation algorithms [5].
We then optimizegC(zcjc) by alternatively optimizing the
deformation coef�cient setf zĉ

cjc; ĉ 2 CB g, and the neural
network  � (�). To optimizef zĉ

cg, we �x f Bcg and opti-
mize eachzĉ

c by minimizing the Chamfer Distance (CD),
also denoted asdCD(�; �), between the deformed convexc
and the target̂c. Then we optimizef Bcg by �xing deforma-
tion coef�cientsf zĉ

cg and minimizing average CD between
deformedc and the target̂c for each pair(c; ĉ), which leads
to the convex deformation lossL C at the training time:

L C =
1

jCB j

X

c;ĉ2CB

dCD(gC(zcjc;zc = zĉ
c); ĉ): (1)

After the above alternative optimization, the distribution of
zc for each convexc is modeled by a mixture of Gaussian
distribution �t to the �nal coef�cient set f zĉ

c jĉ 2 CB g. At
the �ne-tuning time,gC(zjc) is further optimized via the
same procedure by the convex correspondence setCA of the
target datasetA .

Figure 3. Synchronization Process. The left part illustrates the de-
composed convexes and source cages of the input eyeglass frame. The
right part visualize synchronization matrices (a4 � 4 matrix here for each
cage), cages deformed by bases before synchronization (left two columns),
and cages deformed by synchronized bases (right two columns).

Convex deformation synchronization.After learning the
conditional generative model for each convexc, the next
step is to compose all the deformation spaces for the whole
mesha. Since for each convexc, gC(zcjc) exploits a sep-
arate set of deformation basesBc, the noise parameterzc

varies its meaning from convex to convex. As a result, if

we draw independent noise parameters for each convex, the
outcoming deformations could easily contradict with each
other, failing the whole mesh-level deformation. To tackle
this issue, we synchronize different deformation basesBc

with linear transformationsSc so that a single noise param-
eterz can be shared across all convexes.

Formally speaking, given a set of articulated object
meshesA from a certain category and an articulated mesh
a 2 A , assuming the mesh is segmented intoM convexes
f cm gM

m =1 and each convex is equipped with a deformation
modelgC(zcm jcm ), our goal is to replacezcm with Scm z so
that sampling the shared noise parameterz results in a glob-
ally consistent mesh deformation. To compute the synchro-
nization transformationScm , we consider the deformation
from a to other articulated meshesai 2 A . In particular, for
eachai , we optimize for a set of deformation coef�cients
f y i

m g so that each convexcm in mesha could deform into
the corresponding convexci

m in meshai following the de-
formation modelgC(zcm jcm ; zcm = y i

m ). We can then esti-
mate the synchronization transformationsf Scm g by solving
the following optimization problem:

minimize
f Sc m g;f z i g

jAjX

i =1

MX

m =1

kBcm Scm zi � Bcm y i
m k2; (2)

whereBcm is the deformation bases of convexcm andzi is
a global deformation coef�cient from mesha to ai shared
across all convexes. We solve the above optimization prob-
lem via alternatively optimizing the synchronization trans-
formationsf Scm g and the global deformation coef�cients
f zi g:

• Fix f Scm g, optimize each global deformation coef�-
cientzi from a to ai via Algorithm 2. It takes the con-
vex deformation basesf Bcm g, current synchroniza-
tion transformationsf Scm g, convex deformation co-
ef�cients f y i

m g as input, and outputs the optimizedzi .
• Fix f zi g, optimize each synchronization transforma-

tion Scm for each convexcm via Algorithm 1. It takes
the convex deformation basesf Bcm g, current global
deformation coef�cientsf zi g, convex deformation co-
ef�cients f y i

m g as input, and outputs the optimized
Scm .

Figure 4.Synchronization's Effectiveness.The synchronized deforma-
tion bases can consistently transform each convex for a valid part shape
(upper row), while those before the synchronization fail (bottom row).


